CLASSIFICATION OF FINITE ABELIAN GROUPS

1. The main theorem

Theorem 1.1. Let A be a finite abelian group. There is a sequence of prime numbers

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{n}
$$

(not necessarily all distinct) and a sequence of positive integers

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

such that A is isomorphic to the direct product

$$
A \xrightarrow{\sim} \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{a_{n}}} .
$$

In particular

$$
|A|=\prod_{i=n}^{n} p_{i}^{a_{i}} .
$$

Example 1.2. We can classify abelian groups of order $144=2^{4} \times 3^{2}$. Here are the possibilities, with the partitions of the powers of 2 and 3 on the right:

$$
\begin{aligned}
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} ; \quad(4,2)=(1+1+1+1,1+1) \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} ;(4,2)=(1+1+2,1+1) \\
\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} ; \quad(4,2)=(2+2,1+1) \\
\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} ;(4,2)=(1+3,1+1) \\
\mathbb{Z}_{16} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} ;(4,2)=(4,1+1) \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} ;(4,2)=(1+1+1+1,2) \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} ; \quad(4,2)=(1+1+2,2) \\
\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} ; \quad(4,2)=(2+2,2) \\
\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9} ; \quad(4,2)=(1+3,2) \\
\mathbb{Z}_{16} \times \mathbb{Z}_{9} \text { cyclic, isomorphic to } \mathbb{Z}_{144} ;(4,2)=(4,2) .
\end{aligned}
$$

There are 10 non-isomorphic abelian groups of order 144.
Theorem 1.1 can be broken down into two theorems.

Theorem 1.3. Let A be a finite abelian group. Let q_{1}, \ldots, q_{r} be the distinct primes dividing $|A|$, and say

$$
|A|=\prod_{j} q_{j}^{b_{j}}
$$

Then there are subgroups $A_{j} \subseteq A, j=1, \ldots, r$, with $\left|A_{j}\right|=q_{j}^{b_{j}}$, and an isomorphism

$$
A \xrightarrow{\sim} A_{1} \times A_{2} \times \cdots \times A_{r} .
$$

Let p be a prime number. A finite group (abelian or not) is called a p-group if its order is a power of p.

Theorem 1.4 (Abelian p-groups). Let p be a prime and let A be a finite abelian group of order p^{N} for some $N \geq 1$. Then there is a sequence of positive integers $c_{1} \leq c_{2} \cdots \leq c_{s}$ and an isomorphism

$$
A \xrightarrow{\sim} \mathbb{Z}_{p^{c_{1}}} \times \mathbb{Z}_{p^{c_{2}}} \times \cdots \times \mathbb{Z}_{p^{c_{s}}} .
$$

Theorem 1.3 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard, apart from one Key Lemma. It will be presented in class.

Theorem 1.4 is a more complicated induction argument that needs to be studied in order to be understood. It will be carried out in the next section.

Guide to the proof. Here is a short summary to help guide your reading of the proof: Theorem 1.4 is obvious when the group A has order p. So we assume it is true for abelian groups of order p^{k} for $k<N$. We introduce the notion of exponent of a finite p-group and choose an element $a \in A$ of maximal order, which is equal to the exponent of A. We then show that there is a subgroup $H \subset A$ of order p such that $H \cap\langle a\rangle$ contains just the identity. It follows that the image $\bar{a} \in A / H$ of a is of maximal order - in other words, its order is the exponent of A / H - and since $|A / H|<|A|$, the induction step implies that the theorem holds for A / H. Thus $A / H \xrightarrow{\sim}\langle a\rangle \times B^{\prime}$ for some B^{\prime}, and a short argument then allows us to conclude that $A \xrightarrow{\sim}\langle a\rangle \times B$, where $B=\tilde{B}^{\prime}$ is the subgroup of A corresponding to the subgroup B^{\prime} of A / H.

This completes the proof of the Lemma, and then a second application of the induction step, this time to B, completes the proof of Theorem 1.4.

2. The induction step (A Very long lemma)

Let p and A be as in Theorem 1.4. We prove it by induction on the integer N, of course. If $N=1$ then $|A|=p$. In that case we know that A is a cyclic group isomorphic to \mathbb{Z}_{p}. So we assume the theorem is known for groups of order p^{k} with $k<N$. The induction step is to show that it is then known when $|A|=p^{N}$.

Definition 2.1. Let A be a finite p-group. The exponent of A is the largest integer m such that there is an element $a \in A$ of order exactly p^{m}. In other words $a^{p^{m}}=e$ but $a^{p^{m-1}} \neq e$.

Thus if A is cyclic of order p^{N}, the exponent of A is N : a generator has order p^{N} but not p^{N-1}. We need the following facts about the exponent.

Fact 2.2. Let A be a finite p-group, $H \subset A$ a normal subgroup. Suppose the exponent of A is m. Then the exponent of A / H is $\leq m$.

Proof. Let $\pi: A \rightarrow A / H$ be the reduction map. Every element $x \in A / H$ is of the form $\pi(a)$ for some element $a \in A$. We know that $a^{p^{r}}=e$ for some $r \leq m$. It follows that

$$
x^{p^{r}}=(\pi(a))^{p^{r}}=\pi\left(a^{p^{r}}\right)=\pi(e)=e .
$$

So $x^{p^{m}}=e$ for all $x \in A / H$, which implies that the exponent of A / H is at most m.

Fact 2.3. Let A be a finite p-group, $H \subset A$ a normal subgroup, $a \in A$. Suppose

$$
\langle a\rangle \cap H=\{e\},
$$

where $\langle a\rangle \subset A$ is the cyclic subgroup generated by a. Suppose a is of order p^{m}. Let $\pi: A \rightarrow A / H$ be the reduction map and let $\bar{a}=\pi(a) \in A / H$. Then \bar{a} is of order p^{m} in A / H.

Proof. In any case $\bar{a}^{p^{m}}=e$ for the reason already seen in the proof of Fact 2.2. Suppose \bar{a} is of order less than p^{m}, say $\bar{a}^{s}=e$ for some $1 \leq s<p^{m}$. That means that $\pi\left(a^{s}\right)=e$, or $a^{s} \in \operatorname{ker} \pi$, which implies that $a^{s} \in H$. Thus $a^{s} \in\langle a\rangle \cap H=\{e\}$, which implies that $a^{s}=e$, and this contradicts the assumption that a is of order p^{m}.

Here is the main step in the proof.
Lemma 2.4. Let A be a finite abelian p-group of order p^{N} and exponent m, so that the cyclic group $\langle a\rangle$ has order p^{m}. Let $a \in A$ be an element of order p^{m}. Then there is a subgroup $B \subseteq A$ such that $B \cap\langle a\rangle=\{e\}$, and the inclusion of B and $\langle a\rangle$ as subgroups of A defines an isomorphism

$$
B \times\langle a\rangle \xrightarrow{\sim} A .
$$

Proof. This is an induction on N. If $N=1$ then A is cyclic and we are done. Suppose we know the statement for $1 \leq k<N$. We have already chosen a of maximal exponent. Now we choose $h \in A$ of smallest order such that $h \notin\langle a\rangle$. (We will soon see that h is of order p.) If no such h exists, then every $h \in A$ belongs to $\langle a\rangle$ and so $A=\langle a\rangle$ is cyclic, and we can take $B=\{e\}$.

So we assume such an h exists. Let $u=h^{p}$. If $u=e$ then h has order p. If not, then h has order p^{r} for some $r>1$, by Lagrange's theorem, because A is a p-group. And then $u^{p^{r-1}}=h^{p\left(p^{r-1}\right)}=h^{p^{r}}=e$, so u has smaller order
than h, which by definition implies that $u \in\langle a\rangle$, say $u=a^{s}$, for some integer $s \in\left\{1,2, \ldots p^{m}-1\right\}$. Thus $h^{p}=a^{s}$, so

$$
\left(a^{s}\right)^{p^{m-1}}=\left(h^{p}\right)^{p^{m-1}}=h^{p^{m}}=e
$$

since m is the exponent of A. It follows that a^{s} has order strictly less than p^{m}, so a^{s} is not a generator of the cyclic group $\langle a\rangle$. Thus s is divisible by p, say $s=p c$. Then

$$
h^{p}=\left(a^{c}\right)^{p} \Rightarrow\left(a^{-c} h\right)^{p}=e
$$

Let $h^{\prime}=a^{-c} h$. If $h^{\prime} \in\langle a\rangle$ then so is $a^{c} h^{\prime}=h$, but h was chosen not in $\langle a\rangle$, contradiction. So $h^{\prime} \in A$ is an element of order p that is not in $\langle a\rangle$. Since h has the smallest order of elements not in $\langle a\rangle$, it follows that h has order p after all.

Let $H=<h>$. We see $H=|<h>|=p$, and $\langle a\rangle \cap H=\{e\}$, since $h \notin\langle a\rangle$. Consider the composite homomorphism

$$
\langle a\rangle \hookrightarrow A \rightarrow A / H
$$

We call this composite ϕ, and write $\bar{a}=\phi(a)$. Since $\langle a\rangle \cap H=\{e\}$, it follows from Fact 2.3 that $\bar{a}=\phi(a)$ has order p^{m}.

Now it follows from Fact 2.2 that A / H has exponent at most m. But $\bar{a} \in A / H$ has order exactly p^{m}, so A / H has exponent m. On the other hand $|A / H|$ has order $|A| /|H|=p^{N} / p<|A|$. By induction on N, it follows that there is a subgroup $B^{\prime} \subset A / H$ such that $B^{\prime} \cap\langle\bar{a}\rangle=\{e\}$ and

$$
B^{\prime} \times\langle\bar{a}\rangle \xrightarrow{\sim} A / H .
$$

In particular

$$
|A / H|=|A| / p=\left|B^{\prime}\right| \cdot|\langle\bar{a}\rangle| ;|A|=p \cdot\left|B^{\prime}\right| \cdot|\langle\bar{a}\rangle|=p \cdot\left|B^{\prime}\right| \cdot p^{m}
$$

We know that there is a unique subgroup $\tilde{B}^{\prime} \subset A$ containing H such that $\tilde{B}^{\prime} / H=B^{\prime}$, and thus

$$
\left|\tilde{B}^{\prime}\right|=p \cdot\left|B^{\prime}\right|
$$

We claim that

$$
\langle a\rangle \cap \tilde{B}^{\prime}=\{e\} .
$$

This implies that the homomorphism

$$
\phi^{\prime}:\langle a\rangle \times \tilde{B}^{\prime} \rightarrow A
$$

has trivial kernel. Thus

$$
p^{N}=|A| \geq\left|\langle a\rangle \times \tilde{B}^{\prime}\right|=|\langle a\rangle|\left|\tilde{B}^{\prime}\right|=p^{m} \cdot\left|\tilde{B}^{\prime}\right|=p^{m} \cdot p \cdot\left|B^{\prime}\right|=|A|
$$

Thus ϕ^{\prime} is the isomorphism we are seeking.
It remains to prove $\langle a\rangle \cap \tilde{B}^{\prime}=\{e\}$. But if $b \in\langle a\rangle \cap \tilde{B}^{\prime}$ then the coset $b H \in A / H$ belongs to

$$
\langle a H\rangle \cap \tilde{B}^{\prime} / H=\langle\bar{a}\rangle \cap B^{\prime}=e_{A / H}
$$

In other words, $b \in H$, but $b \in\langle a\rangle$, hence $b=e$.

3. Completion of the proof of Theorem 1.4

Now let A be any abelian p group. We have seen that A is isomorphic to a product

$$
A \xrightarrow{\sim}\langle a\rangle \times B,
$$

where B is a subgroup of A. We can write this

$$
A \xrightarrow{\sim} B \times \mathbb{Z}_{p^{m}}
$$

Now $|B|<|A|$, so by induction B is isomorphic to a product

$$
B \xrightarrow{\sim} \mathbb{Z}_{p^{c_{1}}} \times \mathbb{Z}_{p^{c_{2}}} \times \cdots \times \mathbb{Z}_{p^{c_{s-1}}}
$$

where $c_{1} \leq c_{2} \cdots \leq c_{s-1}$. Since m is the exponent of A, we know that $c_{s-1} \leq m$. Thus setting $c_{s}=m$, we have

$$
A \xrightarrow{\sim} \mathbb{Z}_{p^{c_{1}}} \times \mathbb{Z}_{p^{c_{2}}} \times \cdots \times \mathbb{Z}_{p^{c_{s}}}
$$

and this completes the proof.

