
CLASSIFICATION OF FINITE ABELIAN GROUPS

1. The main theorem

Theorem 1.1. Let A be a finite abelian group. There is a sequence of prime

numbers

p1  p2  · · ·  pn

(not necessarily all distinct) and a sequence of positive integers

a1, a2, . . . , an

such that A is isomorphic to the direct product

A
⇠�!Z

p
a1
1

⇥ Z
p
a2
2

⇥ · · ·⇥ Zp
an
n
.

In particular

|A| =
nY

i=n

p
ai
i
.

Example 1.2. We can classify abelian groups of order 144 = 24⇥ 32. Here

are the possibilities, with the partitions of the powers of 2 and 3 on the right:

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z3 ⇥ Z3; (4, 2) = (1 + 1 + 1 + 1, 1 + 1)

Z2 ⇥ Z2 ⇥ Z4 ⇥ Z3 ⇥ Z3; (4, 2) = (1 + 1 + 2, 1 + 1)

Z4 ⇥ Z4 ⇥ Z3 ⇥ Z3; (4, 2) = (2 + 2, 1 + 1)

Z2 ⇥ Z8 ⇥ Z3 ⇥ Z3; (4, 2) = (1 + 3, 1 + 1)

Z16 ⇥ Z3 ⇥ Z3; (4, 2) = (4, 1 + 1)

Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z9; (4, 2) = (1 + 1 + 1 + 1, 2)

Z2 ⇥ Z2 ⇥ Z4 ⇥ Z9; (4, 2) = (1 + 1 + 2, 2)

Z4 ⇥ Z4 ⇥ Z9; (4, 2) = (2 + 2, 2)

Z2 ⇥ Z8 ⇥ Z9; (4, 2) = (1 + 3, 2)

Z16 ⇥ Z9 cyclic, isomorphic to Z144; (4, 2) = (4, 2).

There are 10 non-isomorphic abelian groups of order 144.

Theorem 1.1 can be broken down into two theorems.
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Theorem 1.3. Let A be a finite abelian group. Let q1, . . . , qr be the distinct
primes dividing |A|, and say

|A| =
Y

j

q
bj

j
.

Then there are subgroups Aj ✓ A, j = 1, . . . , r, with |Aj | = q
bj

j
, and an

isomorphism

A
⇠�!A1 ⇥A2 ⇥ · · ·⇥Ar.

Let p be a prime number. A finite group (abelian or not) is called a
p-group if its order is a power of p.

Theorem 1.4 (Abelian p-groups). Let p be a prime and let A be a finite

abelian group of order p
N

for some N � 1. Then there is a sequence of

positive integers c1  c2 · · ·  cs and an isomorphism

A
⇠�!Zpc1 ⇥ Zpc2 ⇥ · · ·⇥ Zpcs .

Theorem 1.3 is essentially a series of applications of the Chinese Remain-
der Theorem, and is not very hard, apart from one Key Lemma. It will be
presented in class.

Theorem 1.4 is a more complicated induction argument that needs to be
studied in order to be understood. It will be carried out in the next section.

Guide to the proof. Here is a short summary to help guide your reading
of the proof: Theorem 1.4 is obvious when the group A has order p. So we
assume it is true for abelian groups of order p

k for k < N . We introduce
the notion of exponent of a finite p-group and choose an element a 2 A of
maximal order, which is equal to the exponent of A. We then show that there
is a subgroup H ⇢ A of order p such that H \ hai contains just the identity.
It follows that the image ā 2 A/H of a is of maximal order – in other words,
its order is the exponent of A/H – and since |A/H| < |A|, the induction step
implies that the theorem holds for A/H. Thus A/H

⇠�!hai ⇥ B
0 for some

B
0, and a short argument then allows us to conclude that A

⇠�!hai ⇥ B,
where B = B̃

0 is the subgroup of A corresponding to the subgroup B
0 of

A/H.
This completes the proof of the Lemma, and then a second application of

the induction step, this time to B, completes the proof of Theorem 1.4.

2. The induction step (a very long lemma)

Let p and A be as in Theorem 1.4. We prove it by induction on the integer
N , of course. If N = 1 then |A| = p. In that case we know that A is a cyclic
group isomorphic to Zp. So we assume the theorem is known for groups of
order p

k with k < N . The induction step is to show that it is then known
when |A| = p

N .
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Definition 2.1. Let A be a finite p-group. The exponent of A is the largest
integer m such that there is an element a 2 A of order exactly p

m. In other
words ap

m
= e but ap

m�1 6= e.

Thus if A is cyclic of order pN , the exponent of A is N : a generator has
order pN but not pN�1. We need the following facts about the exponent.

Fact 2.2. Let A be a finite p-group, H ⇢ A a normal subgroup. Suppose

the exponent of A is m. Then the exponent of A/H is  m.

Proof. Let ⇡ : A ! A/H be the reduction map. Every element x 2 A/H is
of the form ⇡(a) for some element a 2 A. We know that a

p
r
= e for some

r  m. It follows that

x
p
r
= (⇡(a))p

r
= ⇡(ap

r
) = ⇡(e) = e.

So x
p
m

= e for all x 2 A/H,which implies that the exponent of A/H is at
most m. ⇤
Fact 2.3. Let A be a finite p-group, H ⇢ A a normal subgroup, a 2 A.

Suppose

hai \H = {e},
where hai ⇢ A is the cyclic subgroup generated by a. Suppose a is of order

p
m
. Let ⇡ : A ! A/H be the reduction map and let ā = ⇡(a) 2 A/H. Then

ā is of order p
m

in A/H.

Proof. In any case ā
p
m
= e for the reason already seen in the proof of Fact

2.2. Suppose ā is of order less than p
m, say ā

s = e for some 1  s < p
m.

That means that ⇡(as) = e, or as 2 ker⇡, which implies that as 2 H. Thus
a
s 2 hai \ H = {e}, which implies that a

s = e, and this contradicts the
assumption that a is of order pm. ⇤

Here is the main step in the proof.

Lemma 2.4. Let A be a finite abelian p-group of order p
N

and exponent

m, so that the cyclic group hai has order p
m
. Let a 2 A be an element of

order p
m
. Then there is a subgroup B ✓ A such that B \ hai = {e}, and the

inclusion of B and hai as subgroups of A defines an isomorphism

B ⇥ hai ⇠�!A.

Proof. This is an induction on N . If N = 1 then A is cyclic and we are
done. Suppose we know the statement for 1  k < N . We have already
chosen a of maximal exponent. Now we choose h 2 A of smallest order such
that h /2 hai. (We will soon see that h is of order p.) If no such h exists,
then every h 2 A belongs to hai and so A = hai is cyclic, and we can take
B = {e}.

So we assume such an h exists. Let u = h
p. If u = e then h has order p.

If not, then h has order pr for some r > 1, by Lagrange’s theorem, because
A is a p-group. And then u

p
r�1

= h
p(p

r�1
) = h

p
r
= e, so u has smaller order
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than h, which by definition implies that u 2 hai, say u = a
s, for some integer

s 2 {1, 2, . . . pm � 1}. Thus hp = a
s, so

(as)p
m�1

= (hp)p
m�1

= h
p
m
= e

since m is the exponent of A. It follows that as has order strictly less than
p
m, so a

s is not a generator of the cyclic group hai. Thus s is divisible by p,
say s = pc. Then

h
p = (ac)p ) (a�c

h)p = e.

Let h0 = a
�c
h. If h0 2 hai then so is ach0 = h, but h was chosen not in hai,

contradiction. So h
0 2 A is an element of order p that is not in hai. Since h

has the smallest order of elements not in hai, it follows that h has order p

after all.
Let H =< h >. We see H = | < h > | = p, and hai \ H = {e}, since

h /2 hai. Consider the composite homomorphism

hai ,! A ! A/H.

We call this composite �, and write ā = �(a). Since hai\H = {e}, it follows
from Fact 2.3 that ā = �(a) has order pm.

Now it follows from Fact 2.2 that A/H has exponent at most m. But
ā 2 A/H has order exactly p

m, so A/H has exponent m. On the other hand
|A/H| has order |A|/|H| = p

N
/p < |A|. By induction on N , it follows that

there is a subgroup B
0 ⇢ A/H such that B0 \ hāi = {e} and

B
0 ⇥ hāi ⇠�!A/H.

In particular

|A/H| = |A|/p = |B0| · |hāi|; |A| = p · |B0| · |hāi| = p · |B0| · pm.

We know that there is a unique subgroup B̃
0 ⇢ A containing H such that

B̃
0
/H = B

0, and thus

|B̃0| = p · |B0|.
We claim that

hai \ B̃
0 = {e}.

This implies that the homomorphism

�
0 : hai ⇥ B̃

0 ! A

has trivial kernel. Thus

p
N = |A| � |hai ⇥ B̃

0| = |hai||B̃0| = p
m · |B̃0| = p

m · p · |B0| = |A|.
Thus �0 is the isomorphism we are seeking.

It remains to prove hai \ B̃
0 = {e}. But if b 2 hai \ B̃

0 then the coset
bH 2 A/H belongs to

haHi \ B̃0/H = hāi \B
0 = eA/H .

In other words, b 2 H, but b 2 hai, hence b = e.
⇤
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3. Completion of the proof of Theorem 1.4

Now let A be any abelian p group. We have seen that A is isomorphic to
a product

A
⇠�!hai ⇥B,

where B is a subgroup of A. We can write this

A
⇠�!B ⇥ Zpm .

Now |B| < |A|, so by induction B is isomorphic to a product

B
⇠�!Zpc1 ⇥ Zpc2 ⇥ · · ·⇥ Zp

cs�1

where c1  c2 · · ·  cs�1. Since m is the exponent of A, we know that
cs�1  m. Thus setting cs = m, we have

A
⇠�!Zpc1 ⇥ Zpc2 ⇥ · · ·⇥ Zpcs

and this completes the proof.


