Some group tables and group computations

The two groups of order 4 (up to isomorphism): (i) $\mathbb{Z} / 4 \mathbb{Z}$:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Aside from the trivial subgroup, $\mathbb{Z} / 4 \mathbb{Z}$ has one proper subgroup of order 2: $\langle 2\rangle$.
(ii) The Klein 4 -group V (isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$):

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

V has three subgroups of order 2: $\langle a\rangle,\langle b\rangle$, and $\langle c\rangle$.
The only group, up to isomorphism, of order $5, \mathbb{Z} / 5 \mathbb{Z}$:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$\mathbb{Z} / 5 \mathbb{Z}$ has no proper subgroups aside from the trivial subgroup.
The two groups of order 6: (i) $\mathbb{Z} / 6 \mathbb{Z}$:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

$\mathbb{Z} / 6 \mathbb{Z}$ has one subgroup of order 2 , namely $\langle 3\rangle$, and one subgroup of order 3 , namely $\langle 2\rangle$.
(ii) The group table for $D_{3}=S_{3}$: Assume that the vertices of an equilateral triangle are at the points $\mathbf{p}_{1}=(1,0)=(\cos 0, \sin 0), \mathbf{p}_{2}=$ $(\cos 2 \pi / 3, \sin 2 \pi / 3)$, and $\mathbf{p}_{3}=(\cos 4 \pi / 3, \sin 4 \pi / 3)$. Let $\rho=\rho_{1}$ be rotation about the angle $2 \pi / 3$, counterclockwise, and $\rho_{2}=\rho^{2}=\rho^{-1}$ be rotation about the angle $4 \pi / 3$, counterclockwise, or equivalently rotation by the angle $2 \pi / 3$, clockwise. Let $\tau=\tau_{1}$ be reflection about the point \mathbf{p}_{1}, i.e. τ_{1} fixes \mathbf{p}_{1} and interchanges \mathbf{p}_{2} and \mathbf{p}_{3}, and similarly for τ_{2}, τ_{3}. Then one can check: $\rho_{1} \tau_{1}=\tau_{3}$ and $\rho_{2} \tau_{1}=\tau_{2}$. Clearly $\rho^{3}=1$ and $\tau^{2}=\tau_{i}^{2}=1$ for all i. Hence every element of D_{3} can be written as a product $\rho^{a} \tau^{b}$, where $a=0,1,2$ and $b=0,1$, and in fact this representation is unique. Also, again by checking this directly, one can show that

$$
\tau \rho \tau^{-1}=\tau \rho \tau=\rho^{2}
$$

which we can also write as

$$
\tau \rho=\rho^{2} \tau .
$$

This equation tells us how to multiply any two elements in D_{3}. For example,

$$
\begin{aligned}
\tau_{1} \tau_{2} & =\tau \rho^{2} \tau=\tau \rho \rho \tau \\
& =\rho^{2} \tau \rho \tau=\rho^{2} \rho^{2} \tau \tau=\rho^{4} \tau^{2}=\rho=\rho_{1} .
\end{aligned}
$$

\cdot	1	ρ_{1}	ρ_{2}	τ_{1}	τ_{2}	τ_{3}
1	1	ρ_{1}	ρ_{2}	τ_{1}	τ_{2}	τ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	1	τ_{3}	τ_{1}	τ_{2}
ρ_{2}	ρ_{2}	1	ρ_{1}	τ_{2}	τ_{3}	τ_{1}
τ_{1}	τ_{1}	τ_{2}	τ_{3}	1	ρ_{1}	ρ_{2}
τ_{2}	τ_{2}	τ_{3}	τ_{1}	ρ_{2}	1	ρ_{1}
τ_{3}	τ_{3}	τ_{1}	τ_{2}	ρ_{1}	ρ_{2}	1

D_{3} has one subgroup of order 3: $\left\langle\rho_{1}\right\rangle=\left\langle\rho_{2}\right\rangle$. It has three subgroups of order 2: $\left\langle\tau_{1}\right\rangle,\left\langle\tau_{2}\right\rangle$, and $\left\langle\tau_{3}\right\rangle$.

The two nonabelian groups of order 8: (i) The dihedral group D_{4} : Here there are the four rotations $1, \rho=\rho_{1}, \rho_{2}=\rho^{2}, \rho_{3}=\rho^{3}$, about the angles 0 , $\pi / 2=2 \pi / 4, \pi=4 \pi / 4$, and $3 \pi / 2=6 \pi / 4$, and the reflections $\tau=\tau_{1}$ and τ_{2} about the two diagonals of a square (τ_{1} for the diagonal connecting vertices

1 and 3 and τ_{2} connecting vertices 2 and 4) and μ_{1}, μ_{2} for reflections about the perpendicular bisectors of a pair of sides (μ_{1} for the reflection about the line bisecting the line segments $\overline{12}$ and $\overline{34}$, and μ_{2} for the reflection about the line bisecting the line segments $\overline{14}$ and $\overline{23})$. One can check that $\rho \tau=\rho_{1} \tau_{1}=\mu_{1}, \rho^{2} \tau=\rho_{2} \tau_{1}=\mu_{1}$. The relations are $\rho^{4}=1, \tau^{2}=1$, and $\tau \rho \tau=\rho^{-1}=\rho^{3}$, or equivalently $\tau \rho=\rho^{3} \tau$.

\cdot	1	ρ_{1}	ρ_{2}	ρ_{3}	τ_{1}	τ_{2}	μ_{1}	μ_{2}
1	1	ρ_{1}	ρ_{2}	ρ_{3}	τ_{1}	τ_{2}	μ_{1}	μ_{2}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{3}	1	μ_{1}	μ_{2}	τ_{2}	τ_{1}
ρ_{2}	ρ_{2}	ρ_{3}	1	ρ_{1}	τ_{2}	τ_{1}	μ_{2}	μ_{1}
ρ_{3}	ρ_{3}	1	ρ_{1}	ρ_{2}	μ_{2}	μ_{1}	τ_{1}	τ_{2}
τ_{1}	τ_{1}	μ_{2}	τ_{2}	μ_{1}	1	ρ_{2}	ρ_{3}	ρ_{1}
τ_{2}	τ_{2}	μ_{1}	τ_{1}	μ_{2}	ρ_{2}	1	ρ_{1}	ρ_{3}
μ_{1}	μ_{1}	τ_{1}	μ_{2}	τ_{2}	ρ_{1}	ρ_{3}	1	ρ_{2}
μ_{2}	μ_{2}	τ_{2}	μ_{1}	τ_{1}	ρ_{3}	ρ_{1}	ρ_{2}	1

(ii) The quaternion group Q, given by the following table:

\cdot	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	$-k$	$-j$	j
$-i$	$-i$	i	1	-1	$-k$	k	j	$-j$
j	j	$-j$	$-k$	k	-1	1	i	$-i$
$-j$	$-j$	j	k	$-k$	1	-1	$-i$	i
k	k	$-k$	j	$-j$	$-i$	i	-1	1
$-k$	$-k$	k	$-j$	j	i	$-i$	1	-1

Note that there are two elements of order 4 in D_{4}, ρ_{1} and ρ_{3}, and five elements of order $2, \rho_{2}, \tau_{1}, \tau_{2}, \mu_{1}$, and μ_{2}. In Q, however, there are six elements of order $4, \pm i, \pm j$, and $\pm k$, and one element of order $2,-1$. In particular we see that D_{4} and Q are not isomorphic. As for subgroups, Q had three subgroups of order 4 and they are all cyclic: $\langle i\rangle,\langle j\rangle$, and $\langle k\rangle$. (Note that for example $\langle i\rangle=\langle-i\rangle$.) There is one subgroup of order 2 : $\langle-1\rangle$. As for D_{4}, there are five subgroups of order 2 : $\left\langle\rho_{2}\right\rangle,\left\langle\tau_{1}\right\rangle,\left\langle\tau_{2}\right\rangle,\left\langle\mu_{1}\right\rangle$, and $\left\langle\mu_{2}\right\rangle$. There are three subgroups of order 4 . One of them is cyclic, namely $\left\langle\rho_{1}\right\rangle=\left\langle\rho_{3}\right\rangle$. The other two are $\left\{1, \rho_{2}, \tau_{2}, \tau_{2}\right\}$ and $\left\{1, \rho_{2}, \mu_{2}, \mu_{2}\right\}$; both are isomorphic to the Klein 4-group V.

