## The Cauchy-Frobenius Lemma

# Also known as Burnside's Counting Theorem, or The Lemma that is not Burnside's 

## GU4041

Columbia University

March 20, 2020

## Outline

(1) Counting orbits
(2) Applications

Consider a finite group $G$ acting on a finite set $X$. How many orbits does it have?
The answer is: the number of orbits equals the average number of fixed points of elements of $G$ Let $|G \backslash X|$ denote the number of orbits. Then

Theorem (Cauchy-Frobenius, Burnside)

where

$$
X^{g}=\{x \in X, g(x)=x\} .
$$

Consider a finite group $G$ acting on a finite set $X$. How many orbits does it have?
The answer is: the number of orbits equals the average number of fixed points of elements of $G$ Let $|G \backslash X|$ denote the number of orbits. Then

where


Consider a finite group $G$ acting on a finite set $X$. How many orbits does it have?
The answer is: the number of orbits equals the average number of fixed points of elements of $G$ Let $|G \backslash X|$ denote the number of orbits. Then

Theorem (Cauchy-Frobenius, Burnside)

$$
|G \backslash X|=\frac{1}{|G|} \sum_{g \in G} X^{g}
$$

where

$$
X^{g}=\{x \in X, g(x)=x\} .
$$

## A lemma

If $x \in X$, let $G_{x}=\{g \in G \mid g(x)=x\}$. This is clearly (!) a subgroup of $G$, called the stabilizer or isotropy group of $x$. Recall that $\mathcal{O}_{x} \subset X$ is the orbit of $G$ containing $x$.

Leminà
Suppose $y \in \mathcal{O}_{x}$. Then there is an isomorphism $G_{x} \xrightarrow{\sim} G_{y}$ (usually more than one).

## A lemma

If $x \in X$, let $G_{x}=\{g \in G \mid g(x)=x\}$. This is clearly (!) a subgroup of $G$, called the stabilizer or isotropy group of $x$. Recall that $\mathcal{O}_{x} \subset X$ is the orbit of $G$ containing $x$.

Iemma
Suppose $y \in \mathcal{O}_{x}$. Then there is an isomorphism $G_{x} \xrightarrow{\sim} G_{y}$ (usually more than one).

## A lemma

If $x \in X$, let $G_{x}=\{g \in G \mid g(x)=x\}$. This is clearly (!) a subgroup of $G$, called the stabilizer or isotropy group of $x$. Recall that $\mathcal{O}_{x} \subset X$ is the orbit of $G$ containing $x$.

## Lemma

Suppose $y \in \mathcal{O}_{x}$. Then there is an isomorphism $G_{x} \xrightarrow{\sim} G_{y}$ (usually more than one).

## Proof of the lemma

Proof.
Since $y \in \mathcal{O}_{x}$, there is $\gamma \in G$ with $\gamma(x)=y ; \gamma^{-1}(y)=x$. Claim that

$$
\gamma G_{x} \gamma^{-1}=G_{y}
$$

Indeed, if $g \in G_{x}$, then

$$
\gamma g \gamma^{-1}(y)=\gamma g(x)=\gamma(x)=y
$$

This proves the inclusion $\gamma G_{x} \gamma^{-1} \subseteq G_{y}$; but since $\gamma^{-1}(y)=x$ we also have

which means all inclusions are equalities.

## Proof of the lemma

Proof.
Since $y \in \mathcal{O}_{x}$, there is $\gamma \in G$ with $\gamma(x)=y ; \gamma^{-1}(y)=x$. Claim that

$$
\gamma G_{x} \gamma^{-1}=G_{y}
$$

Indeed, if $g \in G_{x}$, then

$$
\gamma g \gamma^{-1}(y)=\gamma g(x)=\gamma(x)=y .
$$

This proves the inclusion $\gamma G_{x} \gamma^{-1} \subseteq G_{y}$; but since $\gamma^{-1}(y)=x$ we also have

$$
G_{x}=\gamma^{-1}\left(\gamma G_{x} \gamma^{-1}\right) \gamma \subseteq \gamma^{-1} G_{y} \gamma \subseteq G_{x}
$$

which means all inclusions are equalities.

## Proof of the theorem

Consider the subset $Z=\{(g, x) \mid g(x)=x\} \subset G \times X$. Then

$$
|Z|=\sum_{g \in G}\left|X^{g}\right|=\sum_{x \in X}\left|G_{x}\right|
$$

Here we first counted $|Z|$ by the partition according to $g \in G$, then according to the partition according to $x \in X$. Count the right-hand side by orbits:

where the sum is over all orbits.

## Proof of the theorem

Consider the subset $Z=\{(g, x) \mid g(x)=x\} \subset G \times X$. Then

$$
|Z|=\sum_{g \in G}\left|X^{g}\right|=\sum_{x \in X}\left|G_{x}\right|
$$

Here we first counted $|Z|$ by the partition according to $g \in G$, then according to the partition according to $x \in X$. Count the right-hand
side by orbits:

where the sum is over all orbits.

## Proof of the theorem

Consider the subset $Z=\{(g, x) \mid g(x)=x\} \subset G \times X$. Then

$$
|Z|=\sum_{g \in G}\left|X^{g}\right|=\sum_{x \in X}\left|G_{x}\right|
$$

Here we first counted $|Z|$ by the partition according to $g \in G$, then according to the partition according to $x \in X$. Count the right-hand side by orbits:

$$
\sum_{x \in X}\left|G_{x}\right|=\sum_{\mathcal{O}} \sum_{x \in \mathcal{O}}\left|G_{x}\right|,
$$

where the sum is over all orbits.

## Proof of the theorem

$$
\sum_{x \in X}\left|G_{x}\right|=\sum_{\mathcal{O}} \sum_{x \in \mathcal{O}}\left|G_{x}\right|
$$

But by the lemma, $\left|G_{x}\right|=\left|G_{y}\right|$ if $x, y \in \mathcal{O}$, and $|\mathcal{O}|=\frac{|G|}{\left|G_{x}\right|}$ for any $x \in \mathcal{O}$. So

$$
\sum_{g \in G}\left|X^{g}\right|=\sum_{\mathcal{O}} \frac{|G|}{\left|G_{x}\right|} \cdot\left|G_{x}\right|=\sum_{\mathcal{O}}|G|=|G \backslash X||G| .
$$

The theorem follows when we divide both sides by $|G|$ :

$$
\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|=\frac{1}{|G|}|G \backslash X||G|=|G \backslash X|
$$

Burnside's Lemma is familiar in computer science. Here are detailed notes from Columbia Computer Science course CS W4205 http: //www.cs.columbia.edu/~cs4205/files/CM9.pdf The notes include an introduction to permutation groups, a proof of the Cauchy-Frobenius theorem, and numerous applications. We work out an example: how many ways are there to color the vertices of a regular hexagon with two colors, up to rotation?


Burnside's Lemma is familiar in computer science. Here are detailed notes from Columbia Computer Science course CS W4205 http: //www.cs.columbia.edu/~cs4205/files/CM9.pdf The notes include an introduction to permutation groups, a proof of the Cauchy-Frobenius theorem, and numerous applications. We work out an example: how many ways are there to color the vertices of a regular hexagon with two colors, up to rotation?


## The hexagon

If we let $V$ be the set of vertices and $C$ the set of colors, then the set $X$ of colorings is $\mid$ Functions $(V, C) \mid=2^{6}$. The group $G$ of rotations has order 6, generated by rotation $r$ through $60^{\circ}$. We list the fixed points:

$\left|X^{r}\right|=2$ (for the 2 colors)
$\left|X^{r^{2}}\right|=2^{2}=4$ (because each of the 2 orbits of $\left\langle r^{2}\right\rangle$ has 2
possibilities)
$\left|X^{r^{3}}\right|=2^{3}=8$ (because each of the 3 orbits of $\left\langle r^{3}\right\rangle$ has 2
possibilities)

$$
\left|X^{r^{4}}\right|=2^{2}=4\left(\text { same as } r^{2}\right)
$$

$$
\left|X^{r^{5}}\right|=2(\text { same as } r)
$$

## The hexagon

If we let $V$ be the set of vertices and $C$ the set of colors, then the set $X$ of colorings is $\mid$ Functions $(V, C) \mid=2^{6}$. The group $G$ of rotations has order 6 , generated by rotation $r$ through $60^{\circ}$. We list the fixed points:

$$
(g=e)\left|X^{e}\right|=|X|=64
$$

( $g=r$ ) $\left|X^{r}\right|=2$ (for the 2 colors)
$\left(g=r^{2}\right)\left|X^{r^{2}}\right|=2^{2}=4$ (because each of the 2 orbits of $\left\langle r^{2}\right\rangle$ has 2 possibilities)
$\left(g=r^{3}\right)\left|X^{r^{3}}\right|=2^{3}=8$ (because each of the 3 orbits of $\left\langle r^{3}\right\rangle$ has 2 possibilities)
$\left(g=r^{4}\right)\left|X^{r^{4}}\right|=2^{2}=4\left(\right.$ same as $\left.r^{2}\right)$
$\left(g=r^{5}\right)\left|X^{r^{5}}\right|=2$ (same as $r$ )

## Burnside's counting theorem for the hexagon

$$
|G \backslash X|=\frac{1}{|G|}[64+2+4+8+4+2]=\frac{84}{6}=14
$$

And here they are ( $b$ for blue, $y$ for yellow):
bbbbbb, yyyyyy
bbbbby, yyyyyb
bbbbyy, yyyybb.bbbyby, yyybyb, bbybby, yybyyb
bybyby, bbbyyy, bbybyy, bybbyy

