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Consider a finite group G acting on a finite set X. How many orbits
does it have?
The answer is: the number of orbits equals the average number of
fixed points of elements of G Let |G\X| denote the number of orbits.
Then

Theorem (Cauchy-Frobenius, Burnside)

|G\X| = 1
|G|

∑
g∈G

Xg,

where
Xg = {x ∈ X, g(x) = x}.
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A lemma

If x ∈ X, let Gx = {g ∈ G | g(x) = x}. This is clearly (!) a subgroup
of G, called the stabilizer or isotropy group of x. Recall that Ox ⊂ X
is the orbit of G containing x.

Lemma

Suppose y ∈ Ox. Then there is an isomorphism Gx
∼−→Gy (usually

more than one).
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Proof of the lemma

Proof.

Since y ∈ Ox, there is γ ∈ G with γ(x) = y; γ−1(y) = x. Claim that

γGxγ
−1 = Gy.

Indeed, if g ∈ Gx, then

γgγ−1(y) = γg(x) = γ(x) = y.

This proves the inclusion γGxγ
−1 ⊆ Gy; but since γ−1(y) = x we

also have
Gx = γ−1(γGxγ

−1)γ ⊆ γ−1Gyγ ⊆ Gx

which means all inclusions are equalities.

GU4041 The Cauchy-Frobenius Lemma



Counting orbits
Applications

Proof of the lemma

Proof.

Since y ∈ Ox, there is γ ∈ G with γ(x) = y; γ−1(y) = x. Claim that

γGxγ
−1 = Gy.

Indeed, if g ∈ Gx, then

γgγ−1(y) = γg(x) = γ(x) = y.

This proves the inclusion γGxγ
−1 ⊆ Gy; but since γ−1(y) = x we

also have
Gx = γ−1(γGxγ

−1)γ ⊆ γ−1Gyγ ⊆ Gx

which means all inclusions are equalities.

GU4041 The Cauchy-Frobenius Lemma



Counting orbits
Applications

Proof of the theorem

Consider the subset Z = {(g, x) | g(x) = x} ⊂ G× X. Then

|Z| =
∑
g∈G

|Xg| =
∑
x∈X

|Gx|.

Here we first counted |Z| by the partition according to g ∈ G, then
according to the partition according to x ∈ X. Count the right-hand
side by orbits: ∑

x∈X

|Gx| =
∑
O

∑
x∈O
|Gx|,

where the sum is over all orbits.
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Proof of the theorem

∑
x∈X

|Gx| =
∑
O

∑
x∈O
|Gx|,

But by the lemma, |Gx| = |Gy| if x, y ∈ O, and |O| = |G|
|Gx| for any

x ∈ O. So∑
g∈G

|Xg| =
∑
O

|G|
|Gx|
· |Gx| =

∑
O
|G| = |G\X||G|.

The theorem follows when we divide both sides by |G|:

1
|G|

∑
g∈G

|Xg| = 1
|G|
|G\X||G| = |G\X|.
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Burnside’s Lemma is familiar in computer science. Here are detailed
notes from Columbia Computer Science course CS W4205 http:
//www.cs.columbia.edu/˜cs4205/files/CM9.pdf
The notes include an introduction to permutation groups, a proof of
the Cauchy-Frobenius theorem, and numerous applications.
We work out an example: how many ways are there to color the
vertices of a regular hexagon with two colors, up to rotation?
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The hexagon

If we let V be the set of vertices and C the set of colors, then the set X
of colorings is |Functions(V,C)| = 26. The group G of rotations has
order 6, generated by rotation r through 60◦. We list the fixed points:

(g = e) |Xe| = |X| = 64.

(g = r) |Xr| = 2 (for the 2 colors)

(g = r2) |Xr2 | = 22 = 4 (because each of the 2 orbits of 〈r2〉 has 2
possibilities)

(g = r3) |Xr3 | = 23 = 8 (because each of the 3 orbits of 〈r3〉 has 2
possibilities)

(g = r4) |Xr4 | = 22 = 4 (same as r2)

(g = r5) |Xr5 | = 2 (same as r)
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Burnside’s counting theorem for the hexagon

|G\X| = 1
|G|

[64 + 2 + 4 + 8 + 4 + 2] =
84
6

= 14

And here they are (b for blue, y for yellow):

bbbbbb, yyyyyy

bbbbby, yyyyyb

bbbbyy, yyyybb.bbbyby, yyybyb, bbybby, yybyyb

bybyby, bbbyyy, bbybyy, bybbyy
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