Finite abelian groups Week of March 23, 2020

GU4041

Columbia University

March 26, 2020

 $\exists \rightarrow$

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 a_1, a_2, \ldots, a_n

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

$$|A| = \prod_{i=n}^{n} p_i^{a_i}.$$

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 $a_1, a_2, ..., a_n$

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

$$|A| = \prod_{i=n}^{n} p_i^{a_i}.$$

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 a_1, a_2, \ldots, a_n

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

$$|A| = \prod_{i=n}^{n} p_i^{a_i}.$$

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 a_1, a_2, \ldots, a_n

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

$$|A| = \prod_{i=n}^{n} p_i^{a_i}.$$

Prime factors

This can be broken down into two theorems.

Theorem (Theorem 1)

Let A be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}.$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{o_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Prime factors

This can be broken down into two theorems.

Theorem (Theorem 1)

Let A be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}.$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order p^N for some N > 1. Then there is a sequence of positive integers $c_1 \le c_2 \cdots \le c_s$ and an isomorphism

$$A \xrightarrow{\sim} \mathbb{Z}_{p^{c_1}} \times \mathbb{Z}_{p^{c_2}} \times \cdots \times \mathbb{Z}_{p^{c_s}}.$$

Theorem 1 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard. Theorem 2 is a more complicated induction argument.

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order p^N for some N > 1. Then there is a sequence of positive integers $c_1 \le c_2 \cdots \le c_s$ and an isomorphism

$$A \xrightarrow{\sim} \mathbb{Z}_{p^{c_1}} \times \mathbb{Z}_{p^{c_2}} \times \cdots \times \mathbb{Z}_{p^{c_s}}.$$

Theorem 1 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard.

Theorem 2 is a more complicated induction argument.

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order p^N for some N > 1. Then there is a sequence of positive integers $c_1 \le c_2 \cdots \le c_s$ and an isomorphism

$$A \xrightarrow{\sim} \mathbb{Z}_{p^{c_1}} \times \mathbb{Z}_{p^{c_2}} \times \cdots \times \mathbb{Z}_{p^{c_s}}.$$

Theorem 1 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard. Theorem 2 is a more complicated induction argument.

Additive notation

We will use *additive notation* for the abelian group *A*. So instead of writing $a \cdot b$ we write a + b, and instead of writing a^m we write ma, where *m* is any integer. We also write -a instead of a^{-1} and 0 instead of *e*. Because *A* is abelian, we know a + b = b + a for any $a, b \in A$.

Lemma

Let A be an abelian group. Then for any $m \in \mathbb{Z}$, the function $a \mapsto ma$ is a homomorphism.

We will use *additive notation* for the abelian group A. So instead of writing $a \cdot b$ we write a + b, and instead of writing a^m we write ma, where *m* is any integer. We also write -a instead of a^{-1} and 0 instead of *e*. Because A is abelian, we know a + b = b + a for any $a, b \in A$.

Lemma

Let A be an abelian group. Then for any $m \in \mathbb{Z}$, the function $a \mapsto ma$ is a homomorphism.

We will use *additive notation* for the abelian group A. So instead of writing $a \cdot b$ we write a + b, and instead of writing a^m we write ma, where *m* is any integer. We also write -a instead of a^{-1} and 0 instead of *e*. Because A is abelian, we know a + b = b + a for any $a, b \in A$.

Lemma

Let A *be an abelian group. Then for any* $m \in \mathbb{Z}$ *, the function* $a \mapsto ma$ *is a homomorphism.*

Proof of the Lemma

Proof.

We need to show that, for all $a, b \in A$,

$$m(a+b) = ma + mb.$$

We prove this for m > 0 by induction; the case of m < 0 is similar. For m = 1 there is nothing to prove. Suppose we know the equality for *m*. Then

$$(m+1)(a+b) = m(a+b) + (a+b) = (ma+mb) + (a+b)$$

by the induction hypothesis. But now by associativity

$$(ma + mb) + (a + b) = ma + (mb + a) + b = ma + (a + mb) + b$$

where the last equality is allowed because A is abelian

Proof of the Lemma

Proof.

We need to show that, for all $a, b \in A$,

$$m(a+b) = ma + mb.$$

We prove this for m > 0 by induction; the case of m < 0 is similar. For m = 1 there is nothing to prove. Suppose we know the equality for *m*. Then

$$(m+1)(a+b) = m(a+b) + (a+b) = (ma+mb) + (a+b)$$

by the induction hypothesis. But now by associativity

$$(ma + mb) + (a + b) = ma + (mb + a) + b = ma + (a + mb) + b$$

where the last equality is allowed because A is abelian

Proof of the Lemma

Proof.

We need to show that, for all $a, b \in A$,

$$m(a+b) = ma + mb.$$

We prove this for m > 0 by induction; the case of m < 0 is similar. For m = 1 there is nothing to prove. Suppose we know the equality for *m*. Then

$$(m+1)(a+b) = m(a+b) + (a+b) = (ma+mb) + (a+b)$$

by the induction hypothesis. But now by associativity

$$(ma+mb)+(a+b)=ma+(mb+a)+b=ma+(a+mb)+b$$

where the last equality is allowed because A is abelian.

Proof of the Lemma, concluded

Proof.

So far we have

$$(m+1)(a+b) = ma + (a+mb) + b.$$

Continuing by associativity

$$ma + (a + mb) + b = (ma + a) + (mb + b) = (m + 1)a + (m + 1)b$$

and we are done by induction.

Proof of the Lemma, concluded

Proof.

So far we have

$$(m+1)(a+b) = ma + (a+mb) + b.$$

Continuing by associativity

$$ma + (a + mb) + b = (ma + a) + (mb + b) = (m + 1)a + (m + 1)b$$

and we are done by induction.

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

 $A_n \times A_m \xrightarrow{\sim} A.$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb$$
.

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb$$
.

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb.$$

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb.$$

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb.$$

Proof.

Since x = ma = nb, we have

$$mx = m^2 a = mnb = 0.$$

Similarly nx = 0.

But there are constants $\alpha, \beta \in \mathbb{Z}$ such that $\alpha m + \beta n = 1$. Thus

$$x = (\alpha m + \beta n)x = \alpha \cdot mx + \beta \cdot nx = 0.$$

So $mA \cap nA = \{0\}$ as claimed.

Proof.

Since x = ma = nb, we have

$$mx = m^2 a = mnb = 0.$$

Similarly nx = 0. But there are constants $\alpha, \beta \in \mathbb{Z}$ such that $\alpha m + \beta n = 1$. Thus

$$x = (\alpha m + \beta n)x = \alpha \cdot mx + \beta \cdot nx = 0.$$

So $mA \cap nA = \{0\}$ as claimed.

Proof.

Since x = ma = nb, we have

$$mx = m^2 a = mnb = 0.$$

Similarly nx = 0. But there are constants $\alpha, \beta \in \mathbb{Z}$ such that $\alpha m + \beta n = 1$. Thus

$$x = (\alpha m + \beta n)x = \alpha \cdot mx + \beta \cdot nx = 0.$$

So $mA \cap nA = \{0\}$ as claimed.

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \ker f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \ker f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus *f* is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

イロト イポト イヨト イヨト

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

イロト イポト イヨト イヨト

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

イロト イポト イヨト イヨト

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

・ 母 ト ・ ヨ ト ・ ヨ ト

A key lemma

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

The Lemma is true even if B is not abelian, and will be proved later. So it can be skipped for now.

A key lemma

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. Since

$p||B| = |H||B/H| = r \cdot |B/H|$

and *p* does not divide *r*, it follows that p||B/H|. Since |B/H| < |B|, the induction step implies there is $g \in B/H$ of order *p*.

イロト イポト イヨト イ

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. Since

$$p||B| = |H||B/H| = r \cdot |B/H|$$

and p does not divide r, it follows that p||B/H|. Since |B/H| < |B|, the induction step implies there is $g \in B/H$ of order p.

・ロト ・ 一下・ ・ ヨト

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. Since

$$p||B| = |H||B/H| = r \cdot |B/H|$$

and *p* does not divide *r*, it follows that p||B/H|. Since |B/H| < |B|, the induction step implies there is $g \in B/H$ of order *p*.

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. Since

$$p||B| = |H||B/H| = r \cdot |B/H|$$

and *p* does not divide *r*, it follows that p||B/H|. Since |B/H| < |B|, the induction step implies there is $g \in B/H$ of order *p*.

Proof.

Let $\pi : B \to B/H$ be the quotient map, $\pi(b) = g \in B/H$. Thus $b \notin H$ but $\pi(pb) = pg = 0$, so $pb \in H$, so rpb = 0. Let a = rb, so pa = 0. We suppose a = 0 and derive a contradiction. Use Bezout's relation yet again. Since (p, r) = 1 there are integers γ, δ such that

$$b = (\gamma p + \delta r)b = \gamma pb + \delta a = \gamma pb + 0 \in H,$$

contradiction.

Proof.

Let $\pi : B \to B/H$ be the quotient map, $\pi(b) = g \in B/H$. Thus $b \notin H$ but $\pi(pb) = pg = 0$, so $pb \in H$, so rpb = 0. Let a = rb, so pa = 0. We suppose a = 0 and derive a contradiction. Use Bezout's relation yet again. Since (p, r) = 1 there are integers γ, δ such that

$$b = (\gamma p + \delta r)b = \gamma pb + \delta a = \gamma pb + 0 \in H,$$

contradiction.

Proof.

Let $\pi : B \to B/H$ be the quotient map, $\pi(b) = g \in B/H$. Thus $b \notin H$ but $\pi(pb) = pg = 0$, so $pb \in H$, so rpb = 0. Let a = rb, so pa = 0. We suppose a = 0 and derive a contradiction. Use Bezout's relation yet again. Since (p, r) = 1 there are integers γ, δ such that

$$b = (\gamma p + \delta r)b = \gamma pb + \delta a = \gamma pb + 0 \in H,$$

contradiction.

Corollary

Suppose A is an abelian group of order $\prod_{i=1}^{r} m_i$, where $(m_i, m_j) = 1$ whenever $i \neq j$. Then there are subgroups A_{m_i} , $i = 1, ..., r \subseteq A$ such that $|A_{m_i}| = m_i$, and such that the inclusion defines an isomorphism

$$A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r} \xrightarrow{\sim} A.$$

Proof.

We complete the proof by induction on *n*. Write $M = \prod_{i=1}^{n-1} m_i$, so that $|A| = M \cdot m_i$. By the Proposition we have an isomorphism

$$A_M \times A_{m_r} \xrightarrow{\sim} A.$$

$$A \xrightarrow{\sim} A_M \times A_{m_r} \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Corollary

Suppose A is an abelian group of order $\prod_{i=1}^{r} m_i$, where $(m_i, m_j) = 1$ whenever $i \neq j$. Then there are subgroups A_{m_i} , $i = 1, \ldots, r \subseteq A$ such that $|A_{m_i}| = m_i$, and such that the inclusion defines an isomorphism

$$A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r} \xrightarrow{\sim} A.$$

Proof.

We complete the proof by induction on *n*. Write $M = \prod_{i=1}^{n-1} m_i$, so that $|A| = M \cdot m_i$. By the Proposition we have an isomorphism

$$A_M \times A_{m_r} \xrightarrow{\sim} A.$$

$$A \xrightarrow{\sim} A_M \times A_{m_r} \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Corollary

Suppose A is an abelian group of order $\prod_{i=1}^{r} m_i$, where $(m_i, m_j) = 1$ whenever $i \neq j$. Then there are subgroups A_{m_i} , $i = 1, ..., r \subseteq A$ such that $|A_{m_i}| = m_i$, and such that the inclusion defines an isomorphism

$$A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r} \xrightarrow{\sim} A.$$

Proof.

We complete the proof by induction on *n*. Write $M = \prod_{i=1}^{n-1} m_i$, so that $|A| = M \cdot m_i$. By the Proposition we have an isomorphism

$$A_M \times A_{m_r} \xrightarrow{\sim} A.$$

$$A \xrightarrow{\sim} A_M \times A_{m_r} \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Corollary

Suppose A is an abelian group of order $\prod_{i=1}^{r} m_i$, where $(m_i, m_j) = 1$ whenever $i \neq j$. Then there are subgroups A_{m_i} , $i = 1, \ldots, r \subseteq A$ such that $|A_{m_i}| = m_i$, and such that the inclusion defines an isomorphism

$$A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r} \xrightarrow{\sim} A.$$

Proof.

We complete the proof by induction on *n*. Write $M = \prod_{i=1}^{n-1} m_i$, so that $|A| = M \cdot m_i$. By the Proposition we have an isomorphism

$$A_M \times A_{m_r} \xrightarrow{\sim} A.$$

$$A \xrightarrow{\sim} A_M \times A_{m_r} \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Corollary

Suppose A is an abelian group of order $\prod_{i=1}^{r} m_i$, where $(m_i, m_j) = 1$ whenever $i \neq j$. Then there are subgroups A_{m_i} , $i = 1, \ldots, r \subseteq A$ such that $|A_{m_i}| = m_i$, and such that the inclusion defines an isomorphism

$$A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r} \xrightarrow{\sim} A.$$

Proof.

We complete the proof by induction on *n*. Write $M = \prod_{i=1}^{n-1} m_i$, so that $|A| = M \cdot m_i$. By the Proposition we have an isomorphism

$$A_M \times A_{m_r} \xrightarrow{\sim} A.$$

$$A \xrightarrow{\sim} A_M \times A_{m_r} \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Classification of finite abelian groups

Completion of the proof of Theorem 1

Recall the statement: Let *A* be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}.$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Write $m_j = q_j^{b_j}$, j = 1, ..., r. Then $(m_j, m_i) = 1$ whenever $i \neq j$. We apply the Corollary. Thus there are subgroups A_{m_j} , j = 1, ..., r, with $|A_{m_j}| = m_j = q_j^{b_j}$, such that

$$A \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Set $A_j = A_{m_j}$ and we are done.

(4 個) トイヨト イヨト

Classification of finite abelian groups

Completion of the proof of Theorem 1

Recall the statement: Let *A* be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}.$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Write $m_j = q_j^{b_j}$, j = 1, ..., r. Then $(m_j, m_i) = 1$ whenever $i \neq j$. We apply the Corollary. Thus there are subgroups A_{m_j} , j = 1, ..., r, with $|A_{m_j}| = m_j = q_j^{b_j}$, such that

$$A \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Set $A_j = A_{m_j}$ and we are done.

Classification of finite abelian groups

Completion of the proof of Theorem 1

Recall the statement: Let *A* be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Write $m_j = q_j^{b_j}$, j = 1, ..., r. Then $(m_j, m_i) = 1$ whenever $i \neq j$. We apply the Corollary. Thus there are subgroups A_{m_j} , j = 1, ..., r, with $|A_{m_j}| = m_j = q_j^{b_j}$, such that

$$A \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Set $A_j = A_{m_j}$ and we are done.

Completion of the proof of Theorem 1

Recall the statement: Let *A* be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Write $m_j = q_j^{b_j}$, j = 1, ..., r. Then $(m_j, m_i) = 1$ whenever $i \neq j$. We apply the Corollary. Thus there are subgroups A_{m_j} , j = 1, ..., r, with $|A_{m_j}| = m_j = q_j^{b_j}$, such that

$$A \xrightarrow{\sim} A_{m_1} \times A_{m_2} \times \cdots \times A_{m_r}.$$

Set $A_j = A_{m_j}$ and we are done.

イロト 不得 トイヨト イヨト