MODERN ALGEBRA I GU4041

HOMEWORK 5, DUE FEBRUARY 27: PERMUTATIONS

1. Judson, Section 5.3, exercise 1 and 2 (a)-(f), 2(j).

2. Let Σ_n denote the group of permutations of *n* letters. What is the maximal order of an element of Σ_4 ? Write down an element of Σ_4 with the maximal order and decompose it as a product of disjoint cycles.

3. Find two permutations of 4 letters σ and τ such that $\sigma^2 = \tau^2 = e$ but $\sigma \tau \neq \tau \sigma$.

4. Label the corners of a square 1, 2, 3, 4 as in the diagram. Let $D \subset \Sigma_4$ be the set of permutations of the corners that preserve the square. Show that D is a subgroup of Σ_4 . What is its order?

5. What are the orders of the following permutations?

(a) (132) in Σ_3 (b) (156)(234) in Σ_6 (c) (14235)² in Σ_5 .

RECOMMENDED READING

Judson book, Section 5.1; Howie's notes, Chapter 4.