MODERN ALGEBRA I GU4041

Homework 5, due February 27: Permutations

1. Judson, Section 5.3, exercise 1 and 2 (a)-(f), 2(j).
2. Let Σ_{n} denote the group of permutations of n letters. What is the maximal order of an element of Σ_{4} ? Write down an element of Σ_{4} with the maximal order and decompose it as a product of disjoint cycles.
3. Find two permutations of 4 letters σ and τ such that $\sigma^{2}=\tau^{2}=e$ but $\sigma \tau \neq \tau \sigma$.
4. Label the corners of a square $1,2,3,4$ as in the diagram. Let $D \subset \Sigma_{4}$ be the set of permutations of the corners that preserve the square. Show that D is a subgroup of Σ_{4}. What is its order?
5. What are the orders of the following permutations?
(a) (132) in $\Sigma_{3}(\mathrm{~b})(156)(234)$ in Σ_{6} (c) $(14235)^{2}$ in Σ_{5}.

Recommended Reading

Judson book, Section 5.1; Howie's notes, Chapter 4.

