MODERN ALGEBRA I GU4041

Homework 3, due February 13: Basic properties of groups

1. Let X be a set with two elements e, f.
(a) Can you define a binary operation

$$
\star: X \times X \rightarrow X
$$

that is not associative?
(b) Suppose e is a two-sided identity for \star, in other words

$$
e \star e=e, e \star f=f \star e=f .
$$

(Here we write $e \star e$ instead of $\star(e, e)$, as usual.) How many such operations are there? Are they all necessarily commutative? Associative?
2. (a) Let (X, \star) and (Y, \circ) be two sets with binary operations. Suppose

$$
f: X \rightarrow Y
$$

is a bijection that defines an isomorphism of binary structures, i.e.

$$
f\left(x_{1} \star x_{2}\right)=f\left(x_{1}\right) \circ f\left(x_{2}\right) .
$$

Show that $f^{-1}: Y \rightarrow X$ is also an isomorphism of binary structures.
(b) In the notation of (a), if $X=Y$ and $\star=0$, show that the identity map from X to itself defines an isomorphism of binary structures.
3. Let $n \geq 3$ be an integer. Let Δ_{n} be a regular polygon with n sides in the complex plane, with one vertex at the point 1 and the other vertices on the circle $x^{2}+y^{2}=1$. Let μ_{n} denote the set of vertices of Δ_{n}.
(a) Use either the exponential function or trigonometric functions to list the coordinates of the points in μ_{n}.
(b) Show that the subset $\mu_{n} \subset \mathbb{C}$ is a group under multiplication.
(c) Define an isomorphism of groups $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mu_{n}$.
(d) How many solutions does part (c) have? Explain.
4. List all subgroups of the Klein 4 group and of the cyclic group $\mathbb{Z} / 4 \mathbb{Z}$. How many subgroups contain 3 elements in each case?
5. Let X be a set with 3 elements. How many distinct binary operations

$$
X \times X \rightarrow X
$$

are there?
6. A 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is idempotent if $A^{2}=A$.
(a) Check that the matrices $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are both idempotents (you don't need to write this down). Find an idempotent matrix that is equal to neither of these.
(b) Suppose A is idempotent and invertible. Show that $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Recommended Reading

Howie book, Chapter 1; you should do as many exercises as you can.

