MODERN ALGEBRA I GU4041

Homework 12, due April 30: Sylow theorems

1. Let p be an odd prime number. Show that any group of order $2 p$ is either cyclic or isomorphic to $D_{2 p}$.
2. Let A be a finite abelian group of order N. Let $p_{1}<p_{2}<\cdots<p_{n}$ denote the distinct prime numbers dividing N.
(a) Prove that A has a unique Sylow p-subgroup A_{i} of order a power of p_{i} for $i=1, \ldots, n$.
(b) Show that

$$
A \xrightarrow{\sim} A_{1} \times A_{2} \times \cdots \times A_{n} .
$$

3. Construct p-Sylow subgroups of the symmetric group S_{5} and the alternating group A_{5} for $p=2,3,5$.
4. Judson, section 15.3, exercises 1, 3, 6, 7, 9.

Recommended Reading

Gallagher notes 18, 19; Judson, Chapter 15.

