MODERN ALGEBRA I GU4041

Homework 11, due April 23: Solvable and Nilpotent groups, composition series

Note: The proof of the Jordan-Hölder Theorem will not be covered in class. See the online notes for an explanation.

1. Let p be a prime number and let G be a group of order p^r for some $r \ge 1$. Show that every composition factor of G is isomorphic to Z_p . How many factors are there in a composition series for G?

2. Judson, section 13.3, exercises 4 and 12.

3. Prove that any subgroup of a solvable group is solvable.

4. Give an example of a finite solvable group whose center is just the identity element.

5. Let H be the subset of $GL(3,\mathbb{R})$ consisting of matrices of the form

$$u(x,y,z) = egin{pmatrix} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{pmatrix},$$

where x, y, z are real numbers.

(a) Show that H is a group. (This is one version of what is called the *Heisenberg group*.)

(b) Determine the center Z(H) of H.

(c) Show that H is a nilpotent group, and determine the descending central series of H.

(d) Find an abelian subgroup of H that is different from Z(H).

Recommended reading

Online notes on Jordan-Hölder theorem.