ALGEBRAIC NUMBER THEORY W4043

Homework, week 7, due October 24

- 1. (a) Let $q(X,Y) = aX^2 + bXY + cY^2$ be a positive-definite binary quadratic form with integer coefficients. Assume it has discriminant $\Delta = -7$ and is *reduced*. Recall that a reduced quadratic form has the property that $a \leq \sqrt{|\Delta|/3} \approx 1.53$. Give the possible values for (a, b, c).
 - (b) Use the result of (a) to determine the class number of $K = \mathbb{Q}(\sqrt{-7})$.
- (c) For each q as in (a), determine the set of primes p represented by q. What is their relation to the set of primes that split in K?

DIRICHLET CHARACTERS

Let n be a positive integer. A *Dirichlet character* modulo n is a function $\chi: \mathbb{Z} \to \mathbb{C}$ with the following properties:

- (1) $\chi(ab) = \chi(a)\chi(b)$.
- (2) $\chi(a)$ depends only on the residue class of a modulo n.
- (3) $\chi(a) = 0$ if and only if a and n have a non-trivial common factor. It follows that a Dirichlet character modulo n can also be considered

It follows that a Dirichlet character modulo n can also be considered a function $\chi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$.

- Let X(n) denote the set of distinct Dirichlet characters modulo n. We consider X(p) when p is prime and show it forms a cyclic group with identity element χ_0 defined by $\chi_0(a) = 1$ if (a, p) = 1, $\chi_0(a) = 0$ if $p \mid a$.
- 2. Show that for any $\chi \in X(p)$, $\chi(1) = 1$, and $\chi(a)$ is a (p-1)st root of 1 for all $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- 3. For all $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, show that $\chi(a^{-1}) = \bar{\chi}(a)$ where $\bar{\chi}$ is the complex conjugate function.
 - 4. Show that $\sum_{a\in\mathbb{Z}/p\mathbb{Z}}\chi(a)=0$ if $\chi\neq\chi_0$.
- 5. Show that the Legendre symbol $a \mapsto \binom{a}{p}$ for (a, p) = 1, extended to take the value 0 at integers divisible by p, defines a Dirichlet character modulo p that is different from χ_0 .