ALGEBRAIC NUMBER THEORY W4043

Homework, week 7, due October 24

1. (a) Let $q(X, Y)=a X^{2}+b X Y+c Y^{2}$ be a positive-definite binary quadratic form with integer coefficients. Assume it has discriminant $\Delta=-7$ and is reduced. Recall that a reduced quadratic form has the property that $a \leq \sqrt{|\Delta| / 3} \approx 1.53$. Give the possible values for (a, b, c).
(b) Use the result of (a) to determine the class number of $K=\mathbb{Q}(\sqrt{-7})$.
(c) For each q as in (a), determine the set of primes p represented by q. What is their relation to the set of primes that split in K ?

Dirichlet characters

Let n be a positive integer. A Dirichlet character modulo n is a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ with the following properties:
(1) $\chi(a b)=\chi(a) \chi(b)$.
(2) $\chi(a)$ depends only on the residue class of a modulo n.
(3) $\chi(a)=0$ if and only if a and n have a non-trivial common factor.

It follows that a Dirichlet character modulo n can also be considered a function $\chi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}$.

Let $X(n)$ denote the set of distinct Dirichlet characters modulo n. We consider $X(p)$ when p is prime and show it forms a cyclic group with identity element χ_{0} defined by $\chi_{0}(a)=1$ if $(a, p)=1, \chi_{0}(a)=0$ if $p \mid a$.
2. Show that for any $\chi \in X(p), \chi(1)=1$, and $\chi(a)$ is a $(p-1)$ st root of 1 for all $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
3. For all $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, show that $\chi\left(a^{-1}\right)=\bar{\chi}(a)$ where $\bar{\chi}$ is the complex conjugate function.
4. Show that $\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a)=0$ if $\chi \neq \chi_{0}$.
5. Show that the Legendre symbol $a \mapsto\binom{a}{p}$ for $(a, p)=1$, extended to take the value 0 at integers divisible by p, defines a Dirichlet character modulo p that is different from χ_{0}.

