ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 6, due October 17

1. Daniel Marcus, Number Fields, Exercise 41, pp. 35-36. (This is a long exercise; do as much as you can.)
2. Hindry's book, Exercise 6.15, p. 119. (Use the Vandermonde determinant; please ask the teacher or the TA if this is unfamiliar to you.)
3. The function $D\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in Hindry's exercise 6.15 is called the discriminant of the basis $\left(x_{1}, \ldots, x_{n}\right)$. Compute discriminants of several bases of of the ring of integers in $\mathbb{Q}(\sqrt{d})$, where d is a square-free integer.
4. In the notation of Hindry's exercise, we let p be a prime number, r a positive integer, and let $F(X)=\left(X^{p^{r}}-1\right) /\left(X^{p^{r-1}}-1\right)$, a polynomial of degree $\phi\left(p^{r}\right)$ where ϕ denotes the Euler function. Let $K=\mathbb{Q}(\zeta)$ be the splitting field of F where ζ is a root of F, and therefore a primitive p^{r} th root of unity.
(a) Suppose $r=1$. Show that the discriminant of the basis $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{p-2}\right\}$ is equal to $\pm p^{p-2}$.
(b) Determine the sign in (a).
(c) Now for any r, show that the discriminant of the basis $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{\phi\left(p^{r}\right)-1}\right\}$ is equal to $\pm p^{p^{r-1}(p r-r-1)}$. (You will find it convenient to use the result of (a).)
5. Use the Minkowski bound to show that the class number (the order of the ideal class group) of $\mathbb{Q}(\sqrt{10})$ is 2 . (See exercise 3 on Homework 4.)
