ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 5, due October 11

I. The first part of this assignment establishes some of the basic properties of quadratic forms attached to ideals in imaginary quadratic fields. A quadratic space of rank n over \mathbb{Z} is a pair (M, q), where M is a free rank n \mathbb{Z}-module (free abelian group on n generators) and $q: M \rightarrow \mathbb{Z}$ is a quadratic form, i.e. a function satisfying
(1) $q(a m)=a^{2} q(m), a \in \mathbb{Z}, m \in M$;
(2) The function $B_{q}: M \times M \rightarrow \mathbb{Z}$, defined by $B_{q}\left(m, m^{\prime}\right)=q\left(m+m^{\prime}\right)-$ $q(m)-q\left(m^{\prime}\right)$ is a bilinear form, i.e.
(3) $B_{q}\left(m, m^{\prime}\right)=B_{q}\left(m^{\prime}, m\right)$;
(4) $B_{q}\left(a m+b m^{\prime}, m^{\prime \prime}\right)=a B_{q}(m, m ")+b B_{q}\left(m^{\prime}, m "\right)$.

We only consider the case $n=2$ and identify M with \mathbb{Z}^{2}. If $\left\{e_{1}, e_{2}\right\}$ is the standard \mathbb{Z}-basis of \mathbb{Z}^{2}, B_{q} is determined by the 2×2 symmetric matrix $\left(b_{i j}\right)$ where $B_{q}\left(e_{i}, e_{j}\right)=b_{i j}$ (and you can check that this in turn determines $\left.q(m)=\frac{B_{q}(m, m)}{2}\right)$. We identify q with a polynomial in two variables (X, Y) by setting

$$
q(X, Y)=q\left(X e_{1}+Y e_{2}\right)
$$

A (binary) quadratic form $q(X, Y)=a X^{2}+b X Y+c Y^{2}$
Say (M, q) and $\left(M^{\prime}, q^{\prime}\right)$ are isomorphic if there is an isomorphism f : $M \rightarrow M^{\prime}$ of abelian groups such that $q^{\prime} \circ f=q$. Define the discriminant of the quadratic form q by $\Delta(q)=-\operatorname{det}\left(b_{i j}\right)$ and check for yourselves (without writing it down) that two isomorphic quadratic spaces have the same discriminant.

1. Consider $q_{1}(X, Y)=X^{2}+15 Y^{2}, q_{2}(X, Y)=3 X^{2}+5 Y^{2}$. Show that q_{1} and q_{2} have the same discriminant but don't define isomorphic quadratic spaces.
2. Let d be a positive squarefree integer. Let $K=\mathbb{Q}(\sqrt{-d})$, with integer ring $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ if $d \equiv 3(\bmod 4)$ and $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-d}]$ if $d \equiv 1,2$ $(\bmod 4)$. We write $\Delta_{d}=-d$ if $d \equiv 3(\bmod 4)$ and $\Delta_{d}=-4 d$ if $d \equiv 1,2$ $(\bmod 4)($ this is the discriminant of the field $K)$.
(a) Show that the quadratic form $q=q_{\mathcal{O}_{K}}$ on the rank $2 \mathbb{Z}$-module \mathcal{O}_{K}, defined by $q(x)=N_{K / \mathbb{Q}}(x)$, has discriminant Δ_{d}. Moreover, q is positive definite: $q(x)>0$ for all $x \neq 0$.
(b) Show that the bilinear form B_{q} associated to q is given by

$$
B_{q}(x, y)=\operatorname{Tr}_{K / \mathbb{Q}}(x \sigma(y))=x \sigma(y)+\sigma(x) y
$$

where $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ is the non-trivial element.
(c) In general, let $I \subset \mathcal{O}_{K}$ be an ideal, $N(I)=\left[\mathcal{O}_{K}: I\right]=\left|\mathcal{O}_{K} / I\right|$. Define $q_{I}: I \rightarrow \mathbb{Q}$ by $q_{I}(x)=N_{K / \mathbb{Q}}(x) / N(I)$. Show that q_{I} takes values in \mathbb{Z} and the pair $\left(I, q_{I}\right)$ is a quadratic space over \mathbb{Z}.
(d) Show that $\left(I, q_{I}\right)$ is of discriminant Δ_{d}.
II. 1. Do exercise 6.15, p. 120 from Hindry's book.
2. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be n linearly independent vectors. Let

$$
G=\left\{\sum_{i=1}^{n} a_{i} v_{i}, a_{i} \in \mathbb{Z}\right\}
$$

be the subgroup of \mathbb{R}^{n} generated by the set of v_{i}. Define the fundamental domain $D \subset \mathbb{R}^{n}$ to be the set

$$
\left.D=\sum_{i=1}^{n} d_{i} v_{i}, 0 \leq d_{i}<1\right\} .
$$

(a) Show that every element $v \in \mathbb{R}^{n}$ can be written uniquely as a sum $d+g$ where $d \in D$ and $g \in G$.
(b) For any $r>0$, let $B(r)$ be the ball of radius r around 0 :

$$
B(r)=\left\{v \in \mathbb{R}^{n} \mid\|v\| \leq r\right\} .
$$

For any $h \in G$, let $D_{h}=h+D=\{h+d \mid d \in D\}$ (in other words, h is fixed but d varies in D). Show that the set of $h \in G$ such that $B(r) \cap D_{h} \neq \emptyset$ is finite.

