ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 5, due October 11

- I. The first part of this assignment establishes some of the basic properties of quadratic forms attached to ideals in imaginary quadratic fields. A quadratic space of rank n over \mathbb{Z} is a pair (M,q), where M is a free rank n \mathbb{Z} -module (free abelian group on n generators) and $q:M\to\mathbb{Z}$ is a quadratic form, i.e. a function satisfying
 - (1) $q(am) = a^2 q(m), a \in \mathbb{Z}, m \in M;$
 - (2) The function $B_q: M \times M \to \mathbb{Z}$, defined by $B_q(m, m') = q(m+m') q(m) q(m')$ is a bilinear form, i.e.
 - (3) $B_q(m, m') = B_q(m', m);$
 - (4) $B_q(am + bm', m'') = aB_q(m, m'') + bB_q(m', m'').$

We only consider the case n=2 and identify M with \mathbb{Z}^2 . If $\{e_1, e_2\}$ is the standard \mathbb{Z} -basis of \mathbb{Z}^2 , B_q is determined by the 2×2 symmetric matrix (b_{ij}) where $B_q(e_i, e_j) = b_{ij}$ (and you can check that this in turn determines $q(m) = \frac{B_q(m,m)}{2}$). We identify q with a polynomial in two variables (X,Y) by setting

$$q(X,Y) = q(Xe_1 + Ye_2).$$

A (binary) quadratic form $q(X,Y) = aX^2 + bXY + cY^2$

Say (M,q) and (M',q') are isomorphic if there is an isomorphism $f: M \to M'$ of abelian groups such that $q' \circ f = q$. Define the discriminant of the quadratic form q by $\Delta(q) = -\det(b_{ij})$ and check for yourselves (without writing it down) that two isomorphic quadratic spaces have the same discriminant.

- 1. Consider $q_1(X,Y) = X^2 + 15Y^2$, $q_2(X,Y) = 3X^2 + 5Y^2$. Show that q_1 and q_2 have the same discriminant but don't define isomorphic quadratic spaces.
- 2. Let d be a positive squarefree integer. Let $K = \mathbb{Q}(\sqrt{-d})$, with integer ring $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-d}}{2}]$ if $d \equiv 3 \pmod{4}$ and $\mathcal{O}_K = \mathbb{Z}[\sqrt{-d}]$ if $d \equiv 1, 2 \pmod{4}$. We write $\Delta_d = -d$ if $d \equiv 3 \pmod{4}$ and $\Delta_d = -4d$ if $d \equiv 1, 2 \pmod{4}$ (this is the discriminant of the field K).
- (a) Show that the quadratic form $q = q_{\mathcal{O}_K}$ on the rank 2 \mathbb{Z} -module \mathcal{O}_K , defined by $q(x) = N_{K/\mathbb{Q}}(x)$, has discriminant Δ_d . Moreover, q is positive definite: q(x) > 0 for all $x \neq 0$.
 - (b) Show that the bilinear form B_q associated to q is given by

$$B_q(x,y) = Tr_{K/\mathbb{Q}}(x\sigma(y)) = x\sigma(y) + \sigma(x)y$$

where $\sigma \in Gal(K/\mathbb{Q})$ is the non-trivial element.

- (c) In general, let $I \subset \mathcal{O}_K$ be an ideal, $N(I) = [\mathcal{O}_K : I] = |\mathcal{O}_K/I|$. Define $q_I : I \to \mathbb{Q}$ by $q_I(x) = N_{K/\mathbb{Q}}(x)/N(I)$. Show that q_I takes values in \mathbb{Z} and the pair (I, q_I) is a quadratic space over \mathbb{Z} .
 - (d) Show that (I, q_I) is of discriminant Δ_d .
 - II. 1. Do exercise 6.15, p. 120 from Hindry's book.
 - 2. Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be n linearly independent vectors. Let

$$G = \{ \sum_{i=1}^{n} a_i v_i, a_i \in \mathbb{Z} \}$$

be the subgroup of \mathbb{R}^n generated by the set of v_i . Define the fundamental domain $D \subset \mathbb{R}^n$ to be the set

$$D = \sum_{i=1}^{n} d_i v_i, 0 \le d_i < 1 \}.$$

- (a) Show that every element $v \in \mathbb{R}^n$ can be written uniquely as a sum d+g where $d \in D$ and $g \in G$.
 - (b) For any r > 0, let B(r) be the ball of radius r around 0:

$$B(r) = \{ v \in \mathbb{R}^n \mid ||v|| \le r \}.$$

For any $h \in G$, let $D_h = h + D = \{h + d \mid d \in D\}$ (in other words, h is fixed but d varies in D). Show that the set of $h \in G$ such that $B(r) \cap D_h \neq \emptyset$ is finite.