ALGEBRAIC NUMBER THEORY W4043

Homework, week 4, due October 3

1. Do Exercise 6.11 from Hindry's book, pp. 118-9.
2. Let $d>0$ be a square-free positive integer congruent to $3(\bmod 4)$.
(a) Every unit $u \in \mathbb{Z}[\sqrt{d}]$ is of the form $a-b \sqrt{d}$ where $a^{2}-d b^{2}= \pm 1$, and the group Γ of units is the product of an infinite cyclic group with $\{ \pm 1\}$. Consider the subset Σ of Γ consisting of $u_{i}=a_{i}-b_{i} \sqrt{d}$ with $a_{i}>0, b_{i}>0$, ordered so that $b_{1} \leq b_{2} \leq b_{3} \ldots$. Show that u_{1} and -1 are generators of Γ. The element u_{1} is called the fundamental unit of $\mathbb{Z}[\sqrt{d}]$.
(b) Show that the following algorithm finds u_{1} : Letting $b=1,2,3, \ldots$, consider the quantities $q^{ \pm}(b)=d b^{2} \pm 1$. Let b_{1} be the smallest positive integer such that either $q^{+}\left(b_{1}\right)$ or $q^{-}\left(b_{1}\right)$ is a perfect square. Let a_{1} be the positive square root of $q\left(b_{1}\right)$; then $u_{1}=a_{1}-b_{1} \sqrt{d}$.
(c) Use this algorithm to find the fundamental units u_{1} of $\mathbb{Z}[\sqrt{7}], \mathbb{Z}[\sqrt{11}]$, $\mathbb{Z}[\sqrt{15}]$. In each case determine $N_{K / \mathbb{Q}}\left(u_{1}\right)$, where $K=\mathbb{Q}(\sqrt{d})$ in each case.
3. As Hindry shows on p . 99 , the $\operatorname{ring} R=\mathbb{Z}[\sqrt{10}]$, which is equal to the ring of integers in $\mathbb{Q}(\sqrt{10})$, is not a principal ideal domain. Indeed, the integer 9 has two inequivalent factorizations:

$$
9=3^{2}=(\sqrt{10}-1)(\sqrt{10}+1) .
$$

(a) Show that $3+\sqrt{10}$ is a unit in R. Use this fact to confirm that the two factorizations are indeed inequivalent.
(b) The integer 10 is definitely a square modulo 3 . What is the prime factorization of the ideal $(3) \subset R$?
4. Let R be a Dedekind ring with only finitely many prime ideals. Show that R is a PID. (Hint: say $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{r}$ are the prime ideals. Find an element $x_{i} \in \mathfrak{p}_{i}$ that is not in any of the \mathfrak{p}_{j} with $j \neq i$, and factor the ideal $\left(x_{i}\right)$. Another piece of information is necessary.)

