ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 3, due September 26

1. Let \mathcal{O} denote the ring of integers in $K=\mathbb{Q}(\sqrt{-14})$.
(a) Show that $3+\sqrt{-14}$ is an irreducible element in \mathcal{O}.
(b) Show that 3 is not equal to $N_{K / \mathbb{Q}}(x)$ for any $x \in \mathcal{O}$.
(c) Show that 3 is an irreducible element in \mathcal{O}.
(d) Show that the principal ideal (3) is not a prime ideal and compute its factorization as a product of prime ideals.
2. Hindry's book, Exercise 6.16 , p. 120. You can use Corollary 3-5.10 from Hindry's book; it will be proved later in the semester.
3. Let K / k be a cubic extension of fields of characteristic 0 , of the form $K=k(\sqrt[3]{d})$ for some $d \in k$ that is not a cube in k. We assume $k \supset \zeta_{3}$, a primitive 3 -rd root of 1 .
(a). Show that $\operatorname{Gal}(K / k)$ is cyclic of order 3.

Let $s: K \rightarrow K$ be a generator of $\operatorname{Gal}(K / k)$,

$$
s(\sqrt[3]{d})=\zeta_{3}(\sqrt[3]{d})
$$

and let $\operatorname{Tr}: K \rightarrow k$ be the k-linear trace map, $\operatorname{Tr}(\alpha)=a+s(a)+s^{2}(a)$.
(b) Find a basis for ker $T r$.
(c) Let $f(X) \in \mathbb{Q}[X]$ be a cubic polynomial, and let L / \mathbb{Q} denote its splitting field. Suppose $[L: \mathbb{Q}]=3$. Prove that all the roots of f are real.
(d) Find a cubic polynomial $f(X) \in \mathbb{Q}[X]$ such that the splitting field L / \mathbb{Q} is of degree 3 , and such that the prime 5 is inert in L. What is the order of the residue field of L at the unique prime dividing 5 ?
(More difficult: replace 5 by 7.)

