
 

 

 
 

Week 12 
  



 

 

Why study the history of mathematics? 
 

There is no one reason, of course.  Here is one line of thinking, consistent (I 
think) with Gayatri's insistence (following Benjamin) that  
 
studying in the present, we construct a past thing: epistemology at work.   
 
In mathematics, much more than in the natural sciences, the disciplinary past is 
a reference that takes the place of the natural world.  The introduction of nearly 
any mathematical text situates the work in a history.  This history is almost never 
subjected to critical scrutiny (and then at most to check for appropriate 
attributions to work in the recent past).   
 
So one reason to study the history of mathematics is critical, to set the record 
straight. 
 
 
 
 



 

 

Another reason is for the sake of philosophical modesty.  This is how we 
imagine the boundaries and goals of mathematics; other traditions have set them 
in different ways.   
 
To take a relatively straightforward example, Reviel Netz is a leading historian 
of Greek mathematics.  A prominent theme in his work is the reconstruction of 
the "cognitive history" of the ancient world, both as a corrective to the tendency 
of mathematicians to read the ancient sources abusively as stages on the way to 
contemporary mathematics ("Whig history") and as a contribution to the history 
of cognition.   
 
Ording's chapter "Antiquity" is informed by a reading of Netz and others and 
(like other chapters) stresses the strangeness of the way of thinking with which 
conventional histories claim a continuity. 
  



 

 

et j'ai vu quelquefois ce que l'homme a cru voir 
(Rimbaud, Le bateau ivre) 

 
And another reason to study the past is to remind ourselves that the present, 
including the mathematics of the present could have been other.     
 

  
 
Deluermoz has more recently set the history of the Paris commune alongside the 
histories of less well-known communes of the same uprising, in Martinique, 
Algeria, or Lyon. 



 

 

 

 
 

[when one reduces]thought to a mathematical apparatus… what is 
abandoned is the whole claim and approach of knowledge: to 
comprehend the given as such; not merely to determine the abstract 
spatio-temporal relations of the facts which allow them just to be 
grasped, but on the contrary to conceive them… as mediated conceptual 
moments which come to fulfillment only in the development of their 
social, historical, and human significance …  

(Horkheimer and Adorno, Dialectic of Enlightenment)  



 

 

…the market value of knowledge — its income-enhancing prospects for 
individuals and industry alike—is now understood as both its driving purpose 
and leading line of defense.  Even when the humanities and interpretive social 
sciences are accounted as building the analytic thinkers needed by the 
professions or as building the mind and hence securing a more gratifying life for 
the individual, they align with the neoliberal notion of building human 
capital.  In neither defense are the liberal arts depicted as representing, 
theorizing, interpreting, creating, or protecting the world.  They are not 
conceived as binding, developing, or renewing us as a people, alerting us to 
dangers, or providing frames, figures, theories, and allegories …  Above all, 
they are not conceived as providing the various capacities required for 
democratic citizenship.  Rather, they are conceived as something for individuals 
to imbibe like chocolate, practice like yoga, or utilize like engineering.  … Even 
[neoliberalization’s] critics cannot see the ways in which we have lost a 
recognition of ourselves as held together by literatures, images, religions, 
histories, myths, ideas, forms of reason, grammars, figures, and 
languages.  Instead, we are presumed to be held together by technologies and 
capital flows.  That presumption, of course, is at risk of becoming true, at which 
point humanity will have entered its darkest chapter ever. 

(Wendy Brown, Undoing the Demos) 



 

 

In neither defense are the liberal arts depicted as representing, theorizing, 
interpreting, creating, or protecting the world.  They are not conceived as 

binding, developing, or renewing us as a people, alerting us to dangers, or 
providing frames, figures, theories, and allegories …  Above all, they are not 

conceived as providing the various capacities required for democratic 
citizenship.  

 
 

So… where is the rhetoric that conveys what mathematics does?            
 
(In case you are wondering why I would need to teach a course like this.)

The essence of mathematics lies entirely in its freedom.
(das Wesen der Mathematik liegt gerade in ihrer Freiheit)

Georg Cantor



 

 

 
Plimpton 322, ca. 1800 BC, 

Columbia Rare Book and Manuscript Library  



 

 

  
Surviving correspondence shows that [Plimpton] bought the tablet 
for $10 from a well-known dealer called Edgar J. Banks in about 
1922. Banks told him it came from an archaeological site called 
Senkereh in southern Iraq, whose ancient name was Larsa.    
 
(E. Robson, "Words and Pictures:  New Light on Plimpton 322,"  2002) 
 
Robson explains that, in addition to numbers, the tablet includes an 
inscription in Akkadian and some abbreviations in Sumerian. 
 

 

 

A. Aaboe, Episodes from the 
Early History of Mathematics, 
1964. 

 



 

 

 
All figures are in sexagesimal, so 2 05 on line 
4 denotes  2´60+5 = 125.  So 

x = (125)2 - 542 = 12709,  

y = 2(125)(54) =  13500, 

z = (125)2 + 542 = 18541  

 127092 + 135002 = 185412  (Check it out!)    

If p and q take on all whole 
values subject only to the 
conditions  
(1) p > q > 0,  
(2) p and q have no common 
divisor,  
(3) p and q are not both odd, 
then the expressions  
x = p2-q2, y = 2pq, z = p2+q2 

generate all reduced 
pythagorean triples x2+y2 = z2. 

 

A. Aaboe, Episodes from the 
Early History of Mathematics, 

1964. 
 



 

 

 

From a Babylonian calculation of the inner diagonal of a 
rectangular gate in a wall: 

 
this 26 40, 8 53 20 the width, 
and 6 40, the thickness of the wall, you see. 
26 40, the height of the wall, let your head retain, then 
11 51 06 40 you see. 
8 53 20, the width of the gate, let your head retain, then 
1 19 ··· 44 26 40 you see. 
6 40, the thickness of the wall, let your head retain, then 
44 26 40 you see. 
Heap them, 13 54 34 14 26 40 you see. 
Its likeside let come up, then 28 53 20 you see 
(for) the gate that (has) 26 40 (as its) height. So you do.  

The expression you	see	translates	the	(Akkadian)	word	ta-mar.				
No	explanation	is	given	for	this	peculiar	calculation	of	a	diagonal.			 	



 

 

The earliest evidence of numeracy 

Starting in the eighth millenium B.C. "number was first recorded, in the 
form of tiny 'tokens' made of clay or stone and shaped into simple 
geometrical forms."  Robson reports the hypothesis that "[e]ven before 
writing… people from southern Iraq were recording numbers of stored 
commodities to protect them from theft or to document transactions."  
Some 5000 tablets from Uruk, dating to the late fourth millenium, 
contain the first literate documents and "the very large majority" contain 
accounting records "and little else," with a good deal of attention given to 
the brewing and distribution of beer.   

The separation of mathematics from the humanities was far in the future. 

	 	



 

 

Some 80% of extant mathematical tablets are pedagogical in nature.   

 

 

Many of the problems of the problem texts have to do with relations 
between areas or volumes of physical objects and their dimensions—
fields, say, or vessels for carrying grain—or relations between prices of 
goods, costs, quantities, and profits. In one direction the solution 
involves a straightforward application of rules for multiplication, given 
known formulas for areas or volumes of standard shapes; but in the other 
direction the solution requires techniques that would now be qualified as 
algebra.  

 

 

  



 

 

Mespotamian homework 
 
From the Old Babylonian collection of geometrical problems BM 15285, before 
1500 BC.             (Robson p. 47) 
 
(7)  The square-side is 1 cable long.  Inside it I drew a second square side.  The 
square-side that I drew touches the outer square-side.  What is its area? 
 
(8)  The square side is 1 cable long.  Inside it <I drew> 4 wedges and 1 square 
side.  The square-side that I drew touches the second square-side.  What is its 
area? 
 
From PUL 31, the Sargon period. c. 2250 BC    (Robson, p. 56) 
 
The long side is 4(ğeš) and 3 <rods>:  <what is> the short side of a 1(iku) field?  
Its short side is to be found. 
 
 

  



 

 

  



 

 

An Old Babylonian word problem, solved 
 

9 <shekels of> silver for a trench. The length exceeds the width by 3;30 (rods). 
Its depth is ½ rod, the work rate 10 shekels. Its wages are 6 grains. What are the 
length and width? 
 
You, when you proceed: solve the reciprocal of the wages, multiply by 0;09, the 
silver, so that it gives you 4 30. Multiply 4 30 by the work rate, so that it gives 
you 45. Solve the reciprocal of ½ rod, multiply by 45, so that it gives you 7;30. 
 
Break off ½ of that by which the length exceeds the width, so that it gives you 
1;45. Combine 1;45, so that it gives you 3;03 45. Add 7;30 to 3;03 45, so that it 
gives <you> 10;33 45. Take its square-side, so that it gives you 3;15. Put down 
3;15 twice. Add 1;45 to 1 (copy of 3;15), take away 1;45 from 1 (copy of 3;15), 
so that it gives you length and width. 
 
The length is 5 rods, the width 1 ½ rods. That is the procedure. 
From the tablet YBC 4692, unprovenanced.     (Robson p. 89) 
 



 

 

Recovering the history 

The discovery and decipherment of the ancient cuneiform tablets was 
accompanied by a rewriting of the history of mathematics in which the practices 
of the Near East were treated as precursors to the "Greek miracle."  Morris 
Kline's judgment in an influential popular history: 

Mathematics as an organized, independent, and reasoned discipline did not exist 
before the classical Greeks…entered upon the scene. 

…at its simplest the realist historical enterprise consists of identifying Platonic 
mathematical objects in the historical record and equating the terminology used 
to describe and manipulate them with their modern-day technical counterparts.  
The emphasis is on tracing mathematical sameness across time and space.  
(Robson, p. 273) 

Robson adds that the study of Mesopotamian mathematics was long deformed 
by Orientalism: 

If in the twentieth century mathematics was eternally unchanging then so was 
the ancient Orient.  



 

 

Diagrams in Greek mathematics 

But the history of Greek mathematics has also had to be rewritten to free 
it from the prejudices of modern European philosophy. 

Reviel Netz, in his “cognitive history” of Greek mathematics, has argued 
for the centrality of visual intuition in this history, and claims that “the 
lettered diagram ... is a predominant feature” of Greek mathematics 
(Netz 1999, 14). In books V and VII–IX of Euclid’s Elements, “all the 
propositions were accompanied by diagrams.” Netz writes that “text and 
diagram are interdependent” (41), and his explanation combines the 
cartesian and the leibnizian: “[T]he visual presence [of the diagram] 
offers a synoptic view, an easy access to the contents; the verbalization 
limits the contents” (181).  

In some situations, the visual dominates; for example, “the clarity of the 
concept” of the tangent in Apollonius “owes a lot to visual intuition ... 
the visual may fulfil, for the Greeks, what we expect the verbal to do” 
(Netz 1999, 102).  



 

 

The historians' question 

are the historically determined features of a given piece of mathematics 
significant to it as mathematics?   

(Netz, The Transformation of Mathematics in the Early Mediterranean World : 
From Problems to Equations) 

 

This figure on p. 10 of Netz (1999) proves what we understand (since 
1886) by the equation     
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At the heart of Unguru’s article was a simple claim for historicity.
Theorems such as Euclid’s Elements ii.5, “If a straight line is cut
into equal and unequal <segments>, the rectangle contained by
the unequal segments of the whole, with the square on the <line>
between the cuts, is equal to the square on the half” (see fig. 1) were
read, at least since Zeuthen (1886), as equivalent to the modern
equation (a + b)(a − b) + b2 = a2. That Euclid had not referred to
any general quantities, but to concrete geometrical figures; that he
did not operate through symbols, but through diagrams; and that
he reasoned through manipulations of the rectangles in the dia-
gram, cutting and pasting them until the equality was obtained –
all this was considered, by authors such as Zeuthen, as irrele-
vant. As a pure mathematical structure, the equivalence between
Euclid’s formulation and modern algebra is straightforward. It is
also indeed true that, for the modern reader, the best way to ascer-
tain the validity of Euclid’s theorem is by correlating it with the
symbolic notation. And here arrives the seduction of a-historicism:
mathematics is supposed to be compelling, it overpowers its read-
ers by the incontrovertibility of its arguments. So, the a-historicist
feels, unless one is overpowered by the argument, it is not really
mathematical. The real form of the mathematical argument, then,
is the form through which the reader feels its validity – that is,
for a modern reader, the modern form. In its geometrical cloth,
the Euclidean formulation is rendered inaccessible to the modern
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In Euclid's Elements II.5 it says  

If a straight line is cut into equal and unequal <segments>, the rectangle 
contained by the unequal segments of the whole, with the square on the 
<line> between the cuts, is equal to the square on the half . 

The mathematicians said it was the same as the algebraic formula.   

here arrives the seduction of a-historicism: mathematics is supposed to 
be compelling, it overpowers its readers by the incontrovertibility of its 
arguments. So, the a-historicist feels, unless one is overpowered by the 
argument, it is not really mathematical. The real form of the 
mathematical argument, then, is the form through which the reader feels 
its validity – that is, for a modern reader, the modern form. In its 
geometrical cloth, the Euclidean formulation is rendered inaccessible to 
the modern reader, so that it is no longer… a piece of mathematics.  

 

 



 

 

Does mathematics change with time? 

 

The historian Sabetai Unguru disagreed and got into a famous fight with 
the mathematicians.  Netz interprets Unguru's reasoning as follows: 

By transforming the geometrical relations of Elements II into an 
algebraic equation, they are rendered trivial: so that, instead of allowing 
us to see better the significance of ancient argument, we, instead, lose 
sight of its importance for the ancient audience. 

This leads to a new problem: 

But what if the very nature of mathematics had changed with time? In 
this case, there is a complicated process characterizing the history of 
mathematics, and the first task of the historian would be to uncover its 
dynamics.  

 



 

 

Identity according to set theory (and Leibniz) 

 

The question of identity would seem to have been settled long 
ago in mathematics by the adoption of the "=" sign as a 
standard item in the lexicon used to construct meaningful 
mathematical propositions. But there is a rich philosophical 
literature on this question. Leibniz's principle of the identity 
of indiscernables states roughly that A = B if everything that 
is true of (or can be predicated of) A is true of B and vice 
versa — if A and B have the same attributes in any sense that 
can be given to this term.   Identity in Leibniz's sense is the 
property captured by the = sign in set theory.  But since A is 
called A and B is called B this does not quite suffice to 
unravel A = B.  



 

 

 

Identity according to Grothendieck 

According to the principle that Grothendieck used to great effect, 
"knowing" a set A means "knowing" where A fits in the category of sets, 
which amounts to "knowing" all its relations (the morphisms in this case 
are just set- theoretic functions) to all other sets.  This principle, valid in 
any category, is known as Yoneda's Lemma and it is so formulated as to 
be obvious to prove, but the experienced will be aware that we are 
skating on the edge of paradox — of Russell's paradox, more precisely 
— by talking about things like "all other sets."   One refers to the 
category of sets rather than the set of all sets; in the former, Russell's 
noxious deductions are not permitted. But this comes at a cost: unless 
one makes additional restrictions, we have lost the principle of identity; it 
is not appropriate to say that two sets A and B are equal.   

  



 

 

Mathematics without identity 

Branches of mathematics that cannot rely on the physical world for 
guidance are subject to the problems of identity. When we solve a 
problem we want to be able to point to the answer unambiguously. In the 
categorical framework, the best we can do is say that the solution is 
unique up to unique isomorphism. This means that, when you and I set 
out to solve the same problem, we know we will be making choices at 
the outset, based on our individual perspectives; unique means there is a 
way to translate my solution into yours, and up to unique isomorphism 
means there is only one way to do it. But finding that translation means 
solving another problem!  

Problems of translation pile up as one climbs the n-categorical ladder:  

...one seems caught at first sight in an infinite chain of ever 'higher,' and 
presumably, messier structures, where one is going to get hopelessly lost, 
unless one discovers some simple guiding principle.... 

(Grothendieck, letter to D. Quillen, 1983) 



 

 

Grothendieck on two mathematical styles 
 

 
Prenons par exemple la tâche de démontrer un théorème qui reste hypothétique 
(à quoi, pour certains, semblerait se réduire le travail mathématique). Je vois 
deux approches extrêmes pour s’y prendre. L’une est celle du marteau et du 
burin, quand le problème posé est vu comme une grosse noix, dure et lisse, dont 
il s’agit d’atteindre l’intérieur, la chair nourricière protégée par la coque. Le 
principe est simple : on pose le tranchant du burin contre la coque, et on tape 
fort. Au besoin, on recommence en plusieurs endroits différents, jusqu’à ce que 
la coque se casse - et on est content. Cette approche est surtout tentante quand la 
coque présente des aspérités ou protubérances, par où "la prendre". Dans 
certains cas, de tels "bouts" par où prendre la noix sautent aux yeux, dans 
d’autres cas, il faut la retourner attentivement dans tous les sens, la prospecter 
avec soin, avant de trouver un point d’attaque. Le cas le plus difficile est celui 
où la coque est d’une rotondité et d’une dureté parfaite et uniforme. On a beau 
taper fort, le tranchant du burin patine et égratigne à peine la surface - on finit 
par se lasser à la tâche. Parfois quand même on finit par y arriver, à force de 
muscle et d’endurance.  
 



 

 

Je pourrais illustrer la deuxième approche, en gardant l’image de la noix qu’il 
s’agit d’ouvrir. La première parabole qui m’est venue à l’esprit tantôt, c’est 
qu’on plonge la noix dans un liquide émollient, de l’eau simplement pourquoi 
pas, de temps en temps on frotte pour qu’elle pénètre mieux, pour le reste on 
laisse faire le temps. La coque s’assouplit au fil des semaines et des mois - 
quand le temps est mûr, une pression de la main suffit, la coque s’ouvre comme 
celle d’un avocat mûr à point ! Ou encore, on laisse mûrir la noix sous le soleil 
et sous la pluie et peut-être aussi sous les gelées de l’hiver. Quand le temps est 
mûr c’est une pousse délicate sortie de la substantifique chair qui aura percé la 
coque, comme en se jouant - ou pour mieux dire, la coque se sera ouverte d’elle-
même, pour lui laisser passage.  
 
 
 
 
 
 
 
 
 
 



 

 

Category theory 
(or, the mathematical imagination reduced to its most basic expression) 

 
A category C consists of a collection of objects (sometimes written Ob(C)) and 
for each pair (c,c') of objects, a set Mor(c,c') of morphisms.   
 
Warning:  The collection Ob(C) is generally not a set!  For example, in the 
category of sets, Ob(C) is the collection of all sets, which (as Russell explained) 
cannot be a set.   
 
The morphisms in  Mor(c,c') are often denoted by arrows f: c ® c'.  In the 
category of sets the morphisms are functions from c to c'.  If you have an arrow 
f: c ® c', and a second arrow g: c' ® c'' in Mor(c',c''), you can concatenate them 
to form an arrow gºf: c ® c" called the composition. There is always a special 
arrow Id: c ® c called the identity morphism.  These data satisfy a short list of 
axioms (composition with the identity doesn't change anything, etc.)   
  



 

 

In the category theory of Samuel Eilenberg and Saunders MacLane, a relation 
between two categories is called a functor.  A functor from C to D  takes the 
objects of C to objects of D  and morphisms as well.   
 
Topological spaces form a category, where the morphisms are continuous maps. 
Vector spaces form a category, where the morphisms are linear maps. 
 
The proof of Brouwer's fixed point theorem (which implies that you can't comb 
the hair on a billiard ball) becomes very easy with the help of a functor from 
topological spaces to vector spaces:  the homology functor, which is a direct 
outgrowth of the considerations in the proof of Euler's formula (and which 
appears in a later chapter of Proofs and Refutations, in Poincaré's proof).   

 

 

 

  


