ALGEBRAIC NUMBER THEORY W4043

Take home final, due December 12 at 3 PM

1. (a) Let $K=\mathbb{Q}(\sqrt{-13})$. Determine the integer ring \mathcal{O}_{K} and the discriminant Δ_{K}.
(b) Show that $V=\mathcal{O}_{K} / 2 \mathcal{O}_{K}$ is a 2-dimensional vector space over the field \mathbb{F}_{2} of 2-elements. For any $v_{1}, v_{2} \in V$, we define an element $B\left(v_{1}, v_{2}\right) \in \mathbb{F}_{2}$ as follows. Choose $\tilde{v}_{1} \in \mathcal{O}_{K}, \tilde{v}_{2} \in \mathcal{O}_{K}$ such that

$$
\tilde{v}_{i} \equiv v_{i} \quad(\bmod 2)
$$

(in other words, lift v_{1} and v_{2} to elements of \mathcal{O}_{K}.) Let

$$
\tilde{B}\left(v_{1}, v_{2}\right)=T r_{K / \mathbb{Q}} v_{1} \cdot v_{2} \in \mathbb{Z}
$$

and define $B\left(v_{1}, v_{2}\right)$ to be the reduction of $\tilde{B}\left(v_{1}, v_{2}\right)$ modulo 2 . Show that $B\left(v_{1}, v_{2}\right)$ depends only on v_{1} and v_{2} and not on the choice of \tilde{v}_{1} and \tilde{v}_{2}. Show that $B\left(v_{1}, v_{2}\right)$ is a symmetric bilinear form, i.e.

$$
B\left(v_{1}, v_{2}\right)=B\left(v_{2}, v_{1}\right) ; B\left(\lambda v+\mu v^{\prime}, v_{2}\right)=\lambda B\left(v, v_{2}\right)+\mu B\left(v^{\prime}, v_{2}\right)
$$

whenever $v_{1}, v, v^{\prime}, v_{2} \in V$ and $\lambda, \mu \in \mathbb{F}_{2}$.
(c) Show that there exists $v \in V$ such that $B(v, w)=0$ for all $w \in V$.
(d) Choose a basis $\left\{e_{1}, e_{2}\right\}$ of V over \mathbb{F}_{2} and write down the matrix

$$
A=\left(\begin{array}{ll}
B\left(e_{1}, e_{1}\right) & B\left(e_{1}, e_{2}\right) \\
B\left(e_{2}, e_{1}\right) & B\left(e_{2}, e_{2}\right)
\end{array}\right) .
$$

Show that $\operatorname{det}(A)=0$. (Note: the vanishing of the determinant should be independent of the choice of basis.)
2. (a) Show that $\lim _{\gtrless_{n}} \mathbb{Z} / 15^{n} \mathbb{Z}$ is a ring isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$. Is it an integral domain?
(b) Suppose we replace 15 with 30: what is the result?
3. Let $N>0$ be an integer and let χ be a Dirichlet character modulo N. Define χ^{-1} to be the Dirichlet character such that $\chi^{-1}(a) \chi(a)=1$ if $(a, N)=1$, and $\chi^{-1}(a)=0$ otherwise. We assume χ is not the trivial character; in other words, there is a prime to N with $\chi(a) \neq 1$.
(a) Let $D(s, \chi)=L(s, \chi) \cdot L\left(s, \chi^{-1}\right)$. Show that this is a Dirichlet series with Euler product

$$
D(s, \chi)=\prod_{p} D_{p}(s, \chi)
$$

and compute $D_{p}(s, \chi)$ for all p.
(b) Let p be a prime that does not divide N. Show that

$$
D_{p}(s, \chi)=\left(1-a_{p} p^{-s}+b_{p} p^{-2 s}\right)^{-1}
$$

where a_{p} and b_{p} are real numbers.
(c) Show that

$$
D(s, \chi)=\sum_{n \geq 1} \frac{a_{n}}{n^{-s}}
$$

where the a_{n} are all real, and that when $n=p$ is a prime not dividing N, then the a_{p} are the same as in (b). Find the set of absolute convergence of $D(s, \chi)$.
(d) Show that $D(s, \chi)$ extends to an entire function of \mathbb{C}. Is this consistent with (b) in view of Landau's Lemma? Explain.
4. Let $p \neq q$ be two odd primes. Let $K_{p}=\mathbb{Q}\left(\zeta_{p}\right), K_{q}=\mathbb{Q}\left(\zeta_{q}\right) K_{p q}=$ $\mathbb{Q}\left(\zeta_{p}, \zeta_{q}\right)$, where $\zeta_{p}=e^{2 \pi i / p}$ and $\zeta_{q}=e^{2 \pi i / q}$.
(a) Show that $\left[K_{p q}: K_{p}\right]=q-1$.
(b) Let $x=\zeta_{p}-\zeta_{q} \in K_{p q}$. Show that

$$
N_{K_{p q} / K_{p}}(x)=1+\zeta_{p}+\zeta_{p}^{2}+\cdots+\zeta_{p}^{q-1}
$$

(c) Show that

$$
N_{K_{p q} / K_{p}}(x)=\frac{1-\zeta_{p}^{q}}{1-\zeta_{p}}
$$

(d) Conclude that x is a unit in the ring of integers of $K_{p q}$.

