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WARNING: Some misprints remain

1. Day 1: Quadratic reciprocity

• (a) Quadratic reciprocity
• (b) Elementary proof of quadratic reciprocity (Flath)
• (c) Quadratic fields and integers
• (d) Rings of algebraic integers

Preliminaries.

Theorem 1.1 (attributed to Theaetetus). The number 5 is not the
square of a rational number.

The proof requires another theorem from antiquity:

Theorem 1.2 (Euclid). Any positive integer is uniquely factorizable
as a product of prime numbers.

More generally, we say that the integer d is squarefree if no prime in
its factorization occurs to power greater than 1. Thus any squarefree
integer is either of the form

∏
i pi or −

∏
i pi where the pi are distinct

prime numbers.

Theorem 1.3 (Chinese Remainder Theorem for integers). Let m,n be
relatively prime integers and let a, b be arbitrary integers. Then there
is c ∈ Z such that

c ≡ a (mod m), c ≡ b (mod n).

More generally, let m1, . . . ,mr be integers relatively prime in pairs,
a1, . . . ar arbitrary integers. Then there are infinitely many c ∈ Z such
that

c ≡ ai (mod mi)

for all i.

Let k be a finite field of characteristic p. So |k| = pr for some r > 0.
We recall the following basic fact, to be proved during Day 5:

Proposition 1.4. The multiplicative group k× of k is cyclic of order
pr − 1.

1
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(Another proof is outlined in the homework.)
Suppose now that p is odd and q = p, so k = Fp = Z/pZ. Then F×p

is a cyclic group of even order p− 1 and contains a unique subgroup of
index 2. This is precisely the image of the map

[2] : F×p → F×p ;x 7→ x2

because the kernel has order 2. So half the elements of F×p are squares

and half are not. If (a, p) = 1, define the Legendre symbol

(
a
p

)
to be 1

if a is a square mod p, −1 if not. The following example is easy:

Proposition 1.5.

(
−1
p

)
= 1 if p ≡ 1 (mod 4), and

(
−1
p

)
= −1 if

p ≡ 3 (mod 4).

Proposition 1.6. (i) For any a ∈ Z prime to p,(
a
p

)
≡ a

p−1
2 (mod p).

(ii) The Legendre symbol is multiplicative.

Proof. It is clear that (i) implies (ii), so we prove (i). The cyclic group
F×p contains a unique subgroup C of order 2. Consider the map

e : F×p → F×p ;x 7→ x
p−1
2 .

Now e ◦ [2](x) = xp−1 = 1 (by Fermat’s little theorem). So e(a) = 1 if(
a
p

)
= 1. On the other hand, if a is a cyclic generator of F×p then its

order is exactly p− 1, so e(a) 6= 1. Thus e is surjective, so its kernel is

exactly the subgroup of index 2, i.e, e(a) = −1 if

(
a
p

)
= −1. �

Let q ∈ Z be a prime different from p. The quadratic reciprocity

theorem determines

(
q
p

)
algorithmically:

Theorem 1.7. Suppose q and p are odd primes. Then(
q
p

)
·
(
p
q

)
= (−1)

p−1
2
· q−1

2

Gauss gave many proofs of this theorem, four of which are in Flath’s
book. The first one, found when he was 19, is “elementary” but in
some sense the most complicated. I begin the course with a part of the
most elementary proof.



COURSE COLUMBIA 2019 3

1.1. Solutions to composite congruences. First we state a few lemmas
about congruences.

Lemma 1.8. Let f ∈ Z[X]. Let m1, . . . ,mr be positive pairwise rela-
tively prime integers. Then the congruence f(X) ≡ 0 (mod m1 . . .mr)
has a solution if and only if each of the congruences f(X) ≡ 0 (mod mi)
has a solution.

This is an easy consequence of the Chinese remainder theorem.

Lemma 1.9. Let f ∈ Z[X]. Let p be a prime, and suppose f̄ has no
multiple roots in F̄p. Then the congruence f(X) ≡ 0 (mod p) has a
solution if and only if for all r ≥ 1 the congruence f(X) ≡ 0 (mod pr)
has a solution.

This is a version of Hensel’s lemma and it will be proved later. If p
is odd, it applies to the polynomial x2−n provided (n, p) = 1. Finally,
the following is an easy exercise.

Lemma 1.10. Let a be an odd integer. Then a is a square mod 2r for
all r ≥ 3 if and only if a ≡ 1 (mod 8).

This will be explained when we talk about p-adic numbers.

1.2. An amazing lemma. At one stage he uses a lemma that Flath says
has ”the most amazing proof in” his book.

Lemma 1.11. Let q be a prime congruent to 1 mod 4. Then there

exists an odd prime p′ < q such that

(
q
p′

)
= −1.

Proof. First suppose q ≡ 5 (mod 8). Then q+1
2
≡ 3 (mod 4). So

at least one divisor p′ of (the odd number) q+1
2

is also ≡ 3 (mod 4).
Obviously p′ < q; but p′ divides q + 1 so q ≡ −1 (mod p′). Thus(
q
p′

)
=

(
−1
p′

)
= −1 because p′ ≡ 3 (mod 4).

The hard case is q ≡ 1 (mod 8). Let m ∈ N satisfy 1 < 2m+ 1 < q

and

(
q
p

)
= 1 for all odd p ≤ 2m + 1. Thus the equation X2 ≡ q

(mod p) has a solution for all odd divisors p of (2m + 1)! and since q
is a square mod 8 it is a square modulo every power of 2. Thus by
the Chinese remainder theorem, it is a square mod (2m+ 1)!. In other
words, there is an x satisfying x2 ≡ q (mod (2m + 1)!) and we may
assume x > m.
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Now write

m∏
i=1

(q − i2) ≡
m∏
i=1

(x2 − i2) =

(2m+ 1)!

(
x+m
2m+ 1

)
x

(mod (2m+ 1)!)

But the binomial coefficient is an integer, say C, and q > (2m + 1)
and so q, and therefore x, is prime to (2m+ 1)!, so by Gauss’s Lemma
x must divide C; say C = Bx. Thus

m∏
i=1

(q − i2) ≡ (2m+ 1)!B ≡ 0 (mod (2m+ 1)!)

But ∏m
i=1(q − i2)

(2m+ 1)!
=

1

m+ 1

m∏
i=1

q − i2

(m+ 1)2 − i2
∈ Z.

But suppose m2 < q < (m + 1)2. Then every factor in the product is
a fraction between 0 and 1. In particular, this equation is impossible
if m = [

√
q]. But q ≡ 1 (mod 8) so q ≥ 17, and thus 2[

√
q] + 1 < q.

So the hypothesis was false, and there is some p′ ≤ 2[
√
q] + 1 such that(

q
p′

)
= −1. �

1.3. Proof of quadratic reciprocity. Let p∗ = (−1)
(p−1)

2 p. Now as an
exercise, we state that (

p∗
q

)
=

(
q
p

)
is equivalent to quadratic reciprocity. Moreover, this is symmetric in
p, q.

We can thus assume p < q and prove quadratic reciprocity in this

form by induction on q. The first case is

(
3∗

5

)
=

(
5
3

)
= −1 which we

check by hand. So assume q > 5 and the theorem is known for pairs
(p, q′) with q′ < q. There are three cases.

Case (1).

(
p∗
q

)
= 1. Thus there are integers u, a, 0 < a < q, with

a2 = p∗+uq. Replacing a by q−a if necessary, we may assume a even;
then u is odd. Moreover, we have the elementary inequalities (because
q > p and a > 0, a < q)

−q < a2 − p∗ ≤ (q − 1)2 + p < q2 − q

so −q < uq < q2 − q, i.e. −1 < u < q, or 1 ≤ u < q.
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First suppose p - u; then p - a. But a2 ≡ uq (mod p) so

(
q
p

)
=

(
u
p

)
,

and so to conclude it suffices to show

(
u
p

)
= 1. Write u =

∏
i pi (not

necessarily distinct, but all distinct from p). Since a2 ≡ p∗ (mod pi),

we have

(
p∗
pi

)
= 1 for each i. But since each pi < q, by induction we

have

(
pi
p

)
= 1 for all p, and so

(
u
p

)
= 1.

Now suppose p | u, so p | a. Let A = a
p
, U = u

p
. Then pA2 =

(−1)
(p−1)

2 + Uq, and now p - U . This implies

(−1)
(p+1)

2 ≡ Uq (mod p)

or (
Uq
p

)
=

(
(−1)

(p+1)
2

p

)
= [(−1)

(p+1)
2 ]

(p−1)
2 = 1.

So

(
q
p

)
=

(
U
p

)
. Write U =

∏
i pi. We have p∗A2 = 1 + ±Uq, so(

p∗
pi

)
= 1 for all i, and by induction as above we find

(
U
p

)
= 1.

Case (2).

(
p∗
q

)
= −1, q ≡ 3 (mod 4).

Case (3).

(
p∗
q

)
= −1, q ≡ 1 (mod 4).

The proofs are similarly elementary. In Case (2) the hypothesis

implies that

(
−p∗
q

)
= 1, and one finds 0 < a < q with a2 = −p∗ + uq

and continues as before. This is not possible in Case (3). Instead, one

begins by using the amazing lemma to find p′ < q with

(
q
p′

)
= −1. If

p = p′ we are done; so assume p′ 6= p. If

(
p′

q

)
= 1 then

(
p′,∗

q

)
= 1

because

(
−1
q

)
= 1, and by Case (1) we have

(
q
p′

)
= 1, contradiction.

So

(
p′

q

)
= −1, which means that

(
pp′

q

)
= 1, and we find 0 < a < q

with a2 = pp′ + uq and continue as before.
Instead of presenting the details of Cases (2) and (3) I will give a

different (complete) proof in week 3 using Gauss sums. Before then,
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I will describe the interpretation of this theorem in terms of algebraic
number theory.

Algebraic integers. We want to solve the polynomial equationQq(X) =
X2− q = 0 in Fp, or equivalently, if α is a root of Qq we want to decide
whether Fp(α) = Fp or a quadratic extension. We start by looking at
Qq ∈ Z[X]. It has a root

√
q ∈ C that is not in Q; so [Q(

√
q) : Q] = 2.

The intuition is that

(
q
p

)
= 1 exactly when

√
q ≡ a (mod p) for some

a ∈ Z. But what does that congruence mean?
It means nothing in the field Q(

√
q), which has no non-trivial ideals.

Instead we work with its subring O of algebraic integers:

Definition 1.12. An algebraic integer is a complex number α such
that P (α) = 0 for some monic polynomial P ∈ Z[X].

Let α = a + b
√
q, with a, b ∈ Q. When is α an integer? Letting

s(α) = a − b√q; s ∈ Gal(Q(
√
q) : Q), the minimal monic polynomial

of α is

P (X) = (X − α)(X − s(α)) = X2 − 2aX + (a2 − qb2).

Thus 2a,N = a2 − qb2 ∈ Z. So a = c
2
, b = d

2
with c and c2 − qd2 ∈ 4Z,

which implies d ∈ Z (if d = u/v in lowest terms, then v2 divides q, so
v = ±1). If c is even then so is d; if c is odd, then so is d, and then
q ≡ 1 (mod 4). Thus

Proposition 1.13. The ring O of algebraic integers in Q(
√
q) is Z[

√
q]

if q ≡ 3 (mod 4), and is Z[
1+
√
q

2
] if q ≡ 1 (mod 4).

More generally, if d is a square-free integer, the ring O of algebraic

integers in Q(
√
d) is Z[

√
d] if d ≡ 2, 3 (mod 4), and is Z[1+

√
d

2
] if d ≡ 1

(mod 4).

Proposition 1.14. The element α ∈ C is integral over Z if and only
if the subring Z[α] ⊂ C is contained in a subring S of C that is a
Z-module of finite type.

Proof. If α satisfies a monic polynomial over Z of degree n then αn ∈
Z+Zα+. . .Zαn−1 and higher powers are in the same ring by induction.
Conversely, if Z[α] is contained in a subring S of C of finite type then
it is contained in a finitely generated Z-module Zu1 +Zu2 + . . .Zun for
some n that is moreover invariant under multiplication by α. It follows
that the matrix A of multiplication by α in the basis (u1, . . . , un) has
coefficients in Z. But then α satisfies the monic polynomial det(XIn−
A) ∈ Z[X] by the Cayley-Hamilton theorem. �
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This proof works with Z replaced by any integral domain. In this
case the proof can be shortened: since Z[α] is contained in the finitely-
generated abelian group S, it is itself a finitely-generated abelian group.
Thus S can be replaced by the ring Z[α] itself, and the proof goes
through unchanged.

Corollary 1.15. Let K/Q be a finite extension. The subset OK of
algebraic integers in K is a subring.

Proof. If α, β ∈ OK , then Z[α] is finite over Z and so is Z[β], so Z[α, β]
is contained in the ring S = Z(αiβj) for 0 ≤ i, j ≤ M for some M . In
particular S is a finitely-generated abelian group. Then the Proposition
implies that every element in Z[α, β] is integral over Z. �

2. Day 2

• (a) Norms and traces, norm of an ideal
• (b) Dedekind properties
• (c)

∑
eifi = g

• (d) Galois properties, Residue fields, decomposition groups,
Frobenius (Samuel)

Say [K : Q] = n. For any α ∈ K, we consider the linear trans-
formation Aα : K → K, Aα(x) = α · x. Let NK/Q(α) = det(Aα),
TrK/Q(α) = Tr(Aα). The bilinear form

B(α, β) = TrK/Q(α · β)

is non-degenerate because if α 6= 0 then B(α, α−1) = n 6= 0.

Proposition 2.1. The ring OK is a free Z-module of rank n. In par-
ticular, OK is a noetherian ring. Moreover, any non-zero ideal I ⊂ OK
is a free Z-module of rank n.

Proof. It suffices to show M ⊂ OK ⊂ N where M and N are free Z-
modules of rank n, since Z is a PID. For any α ∈ K there exists d ∈ Z
such that dα ∈ OK (take the minimal monic polynomial of α over Q
and choose d divisible by all its coefficients). So for any basis e1, . . . , en
of K/Q there exists D such that

M = De1 ⊕ · · · ⊕Den ⊂ OK .
Write fi = Dei and consider the dual basis f ∗i for the bilinear form B.
Every element β such that B(m,β) ∈ Z for all m ∈M is in the Z-span
N of the f ∗i . But B(OK ,OK) ⊂ Z, hence OK ⊂ N .

Now let I ⊂ OK , 0 ⊂ α ∈ I. Since the principal ideal (α) =
αOK ⊂ IOK , it suffices to replace I by (α). But multiplication by α
is invertible, hence injective, and so (α) ' OK as Z-module. �
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Corollary 2.2. The ring OK is integrally closed: any element of K
integral over OK is already in K.

Proof. Let α ∈ K be integral over OK . Then OK [α] is a finite module
overOK . But sinceOK is itself a finite Z-module, any finiteOK module
is also a finite Z-module. Thus Z[α] ⊂ OK [α] is contained in a Z-
module of finite type, hence is itself a Z-module of finite type. Thus α
is integral over Z, i.e. belongs to OK . �

The next corollary is obvious.

Corollary 2.3. Let K/Q be an extension of degree n, and let p be a
prime number. Then the ring OK/pOK is an Fp-algebra of dimension
n.

Corollary 2.4. Let K/Q be a finite extension, and let I ⊂ OK be a
non-zero prime ideal. Then I is maximal.

Proof. Let J = I ∩Z. Since Z/J injects into OK/I, J is a prime ideal.
On the other hand, I ↪→ OK is an inclusion of Z-modules of the same
rank, so OK/I is a finite ring. Now any finite integral domain A is
a field. Indeed, if 0 6= α ∈ A, multiplication by α is injective since
there are no zero-divisors; but since A is finite, multiplication by α
is a bijection, so α has a multiplicative inverse. Thus I is a maximal
ideal. �

Thus OK is a Dedekind ring:

Definition 2.5. A Dedekind ring is an integral domain that is noe-
therian, integrally closed, and all of whose non-zero prime ideals are
maximal.

Return to the case n = 2, K = Q(
√
q), O = OK . Let p be an odd

prime; then
O/pO = O(p)/pO(p)

(localization at p as Z-module), but O(p) = Z(p)[
√
q], so

O/pO = O(p)/pO(p) = Z(p)[
√
q]/p(Z(p)[

√
q]) = Z(p)[X]/(p,X2 − q)

which can also be written

Fp[X]/(X2 − q).
Now there are three possibilities:

(1) X2− q has a double root over Fp; in other words, 2X and X2− q
have a common factor. This is possible only if p = 2 or if p = q. The
case p = 2 requires a separate argument. If p = q then O/pO has
nilpotents; it’s isomorphic to Fp[X]/(X2).
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(2) X2 − q is irreducible over Fp; i.e.

(
q
p

)
= −1. Then the ideal

pO is prime in O.

(3) X2−q is reducible over Fp; i.e.

(
q
p

)
= 1. Then O/pO ≡ Fp×Fp

and the ideal pO is not prime in O. In fact, pO is contained in two
distinct primes, the kernels of the projection to the two factors Fp×Fp.

It is the last interpretation that underlies generalizations of the qua-
dratic reciprocity theorem. Let I, J ⊂ R be two ideals. Say I and J
are relatively prime if I + J = R. The product I · J is the smallest
ideal containing products a · b with a ∈ I, b ∈ J . The product can be
extended to fractional ideals:

Definition 2.6. A fractional ideal in K is a non-zero OK submodule
of finite type.

The definition makes sense in any integral domain. Not all integer
rings OK have unique factorization; they are not all principal. But they
are Dedekind rings, and thus enjoy the following fundamental property:

Theorem 2.7. Let R be a Dedekind ring. Then any ideal of R ad-
mits a unique factorization as a product of prime ideals, and the set of
fractional ideals of R forms a group under multiplication.

Write O = OK .

Proof. Suppose α ∈ K× and I ⊂ O, such that αI ⊂ I. Then α ∈ O.
Indeed, multiplication by α satisfies the characteristic polynomial of
its matrix, which is monic and by hypothesis has O-coefficients. (Here
we are using that O is integrally closed in its quotient field.)

Next, if I, J ⊂ O and I = IJ , then J = O. Indeed, let αi, i =
1, . . . , n be a Z-basis for I. The equality I = IJ means that each αi
can be written as

αi =
∑
j

bijαj;
∑
j

(bij − δij)αj = 0

with bij ∈ J . Thus the matrix (bij − δij) has a non-zero kernel, so
det(bij − δij) = 0, which expanded gives 1 ∈ J .

Finally, we have the following relation: if α ∈ K×, J, I two ideals,
then

(2.8) (α)I = JI ⇒ J = (α)

Indeed, we already see that (α)I = JI ⊂ I so the first observation
implies that α ∈ O. Now for every β ∈ J we have βI ⊂ JI = (α)I,
which means βα−1I ⊂ I, so by the above βα−1 ∈ O and β ∈ (α).
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Thus J ⊂ (α); on the other hand J ′ = α−1J ⊂ O is an ideal such that
J ′I = I, which means J ′ = O by the above. Thus J = (α).

So far, everything is valid for any integrally closed domain. Now
we use a shorter proof, valid only for R = O, based on the following
important theorem, that will be stated without (?) proof (a proof is
given later in the notes):

Theorem 2.9. Define an equivalence relation on ideals (or fractional
ideals) of O by saying I ∼ J if there exists α ∈ K× such that (α)I =
J . (This is obviously an equivalence relation.) The set of equivalence
classes for this relation is finite.

This implies that, for any non-zero I, there exist m < n such that
Im ∼ In; hence there are α, β ∈ O such that αIm = βIn. Thus
α/βIm = In ⊂ Im. By the first observation, this implies γ = α/β ∈ O.
So (γ)Im = In−mIm and by 2.8 this implies In−m = (γ).

Thus for every I 6= (0) there is h = h(I) ∈ N such that Ih is principal.
This implies if IJ = IJ ′ then J = J ′ – indeed, just multiply both sides
by Ih−1 to get (γ)J = (γ)J ′ which implies J = J ′. Similarly

(2.10) I ⊂ J ⇒ ∃J ′, I = JJ ′

Indeed, I ⊂ J ⇒ Jh−1I ⊂ Jh = (γ), thus J ′ = γ−1Jh−1I ⊂ O and
J ′J = γ−1JhI = I.

We first prove existence of the prime factorization. Let I ⊂ O,
i 6= O. Then there exists a maximal ideal p1 ⊃ I. By 2.10, I = p1 · I1.
If I1 6= O, we then have I = p1p2I2. Now I ⊂ I1 ⊂ I2 · · · ⊂ In . . . and
since O is Noetherian, this chain has to stabilize, say In = In+1 = . . . .
But if In 6= O we can continue the process, so In = O, I =

∏n
j=1 pj.

To prove uniqueness, suppose p is prime and pm = pm+1 for some m;
then p · pm = pm which implies by the above that p = O. Thus the pi

are all distinct, and for any I we can define

ordp(I) = supmI ⊂ pm.

Then I ⊂ I ′ = ∩ppordp(I) – which implies that the set of p dividing I
is finite (because the intersection of infinitely many distinct primes is
(0)) so I = I ′J for some J , but since ord is a maximum it follows that
ordp(J) = 0 for all p, so I = I ′. Finally it follows from the Chinese
Remainder Theorem that

∩ppordp(I) =
∏
p

pordp(I)

and we are done. �
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Some commutative algebra. We used the following basic results in com-
mutative algebra:

Proposition 2.11. Let O be the ring of integers of a number field,
{pi, i ∈ N} a sequence of two-by-two distinct prime ideals. Then ∩ipi =
{0}.

(This holds more generally for any Dedekind ring.)

Proof. Let I = ∩ipi. Suppose [O : I] < ∞. The set of ideals between
O and I is then finite. �

Proposition 2.12. (Chinese Remainder Theorem) Let Ii, . . . , Ir be
two-by-two relatively prime ideals in a commutative ring R. Then the
natural map

R/
∏
j

Ij →
∏
j

R/Ij

is an isomorphism.

Proof. The kernel of the map is ∩jIj, so we also need to show that

∩jIj =
∏
j

Ij.

By induction we can assume r = 2. Indeed, suppose I, I ′, I ′′ are two-
by-two relatively prime; we need to show that I+I ′ ·I” = R. We know
that I + I ′ = R, so there exist a′ + b′ = 1 with a′ ∈ I, b′ ∈ I ′; likewise
a′′ + b′′ = 1 with a′′ ∈ I, b′′ ∈ I ′′; then

1 = (a′ + b′)(a′′ + b′′) = (a′a′′ + b′a′′ + b′′a′) + b′b′′ ∈ I + I ′I ′′.

So suppose we have two relatively prime ideals I, J . It is obvious
that I ∩ J ⊃ IJ . For the reverse inclusion we let 1 = a+ b with a ∈ I,
b ∈ J ; if now x ∈ I ∩ J then x = x(a+ b) = xa+ xb is the sum of two
elements of IJ .

Finally, the surjectivity is proved the same way: if (x, y) ∈ R × R
and 1 = a + b as above, then b ≡ 1 (mod I), a ≡ q (mod J), so
z = xb+ ya ≡ x (mod I), z ≡ y (mod J). �

Proposition 2.13. Let R be a Dedekind ring, p and q distinct prime
ideals, r, s > 1, then pr and qs are relatively prime.

Proof. If not, there is a maximal ideal, say m ⊃ pr + qs. Either m is
one of p or q, or it’s prime to both of them; in either case m is prime to
one of the two, say p, and it suffices to prove that m+pr = O to obtain
a contradiction. We know that p and m are maximal so as above, we
can find a ∈ p, b ∈ m with a+ b = 1. Then 1 = (a+ b)r = ar +B with
ar ∈ pr and B ∈ m. �
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Return to quadratic reciprocity. So to conclude, if p and q are odd, K =

Q(
√
q),

(
q
p

)
= −1⇒ pO is prime in O;

(
q
p

)
= 1⇒ pO = p1p2 in O.

Write k(p) for O/p for any prime (maximal) ideal of O. If

(
q
p

)
= −1

then Gal(k(p)/Fp) = ±1; if

(
q
p

)
= 1 then Gal(k(pi)/Fp) = 1, i = 1, 2.

The Legendre symbol is the generator of the Galois group; the next
time I make this clear.

We return to norms and traces. Suppose K = Q(α), and let f ∈
Q[X] be the minimal polynomial of α, n = deg f = [K : Q]. Then it is
easy to write the matrix of multiplication by α in the basis (1, α, . . . , αn−1)
and we find that the characteristic polynomial of this matrix is just f .
Thus if we write

f =
n∏
i=1

(X − αi)

we find that

NK/Q(α) =
∏
i

αi; TrK/Q(α) =
∑
i

αi.

More generally, if [K : Q(α)] = d, then

NK/Q(α) = NK/Q(α)(NQ(α)/Q(α)) = (
∏
i

αi)
d

and similarly TrK/Q(α) = d(
∑

i αi). Note that if α ∈ OK then each of
the αi is an algebraic integer, and so its norm and trace are in Z.

If I ⊂ OK is an ideal, then the index |O/I| is a positive integer,
denoted N(I).

Proposition 2.14. Let α ∈ OK. Then N((α)) = |NK/Q(α)|. Moreover
for any I, J , N(IJ) = N(I)N(J).

Proof. We know that N((α)) = [O : αO] = [O : A(O)] where A is
the linear transformation given by multiplication by α. But for any
invertible linear transformation A of a vector space V and any lattice
L ⊂ V fixed by A, we know [L : A(L)] = | det(A)|. The first statement
follows.

Now we can write I =
∏

i p
ai
i , J =

∏
j p

bj
j and so it suffices to show

that N(I) =
∏

iN(pi)
ai . In other words, it suffices to show that the

map

O/I →
∏
i

O/paii



COURSE COLUMBIA 2019 13

is an isomorphism, and that [O : pa] = [O : p]a for any prime ideal
p But the first statement is the Chinese Remainder Theorem, and the
second follows easily from localization. Alternatively, it can easily be
proved by induction, once one observes that p/pa is a principal ideal
(generated by any element in p not in p2).

�

Proposition 2.15. Let p be a prime number, [K : Q] = n, pOK =∏g
i=1 p

ei
i . Let fi = [k(pi) : Fp]. Then

g∑
i=1

eifi = n.

Proof. We know that N(pOK) = NK/Q(p) = pn. On the other hand
N(pOK) =

∏g
i=1N(pi)

ei , and N(pi) = |k(pi)| = pfi . The formula
follows easily. �

Say p is ramified in K if ei > 1 for some i.

Theorem 2.16. The set of ramified primes in any finite extension
K/Q is non-empty and finite.

Suppose henceforward that K/Q is Galois. This simplifies some of
the proofs as well as statements.

Lemma 2.17. The Galois group Gal(K/Q) preserves OK and O×K.

Proof. If α ∈ K is the root of a polynomial P ∈ Q[X], then s(α) is
the root of the same polynomial for any s ∈ Gal(K/Q). So if α is an
integer, we take P monic in Z[X], which implies s(α) is an integer as
well. Then the equation αβ = 1 with αβ both integers is preserved by
Gal(K/Q) as well. �

If α ∈ K, then all the roots αi of its minimal polynomial are in K,
and then

(2.18) NK/Q(α) =
∏

σ∈Gal(K/Q)

σ(α), T rK/Q =
∑

σ∈Gal(K/Q)

σ(α).

More generally, if [K : Q(α)] = d ≥ 1 then

(2.19) NK/Q(α) = [
∏

σ∈Gal(K/Q)/Gal(K/Q(α)

NQ(α)/Q((α))]d =
∏
i

αdi

and similarly

(2.20) TrK/Q = d ·
∑
i

αi.
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Lemma 2.21. Let p be a prime number, pO =
∏g

i=1 p
ei
i . The group

G = Gal(K/Q) acts transitively on the set of pi. In particular, there
are e, f such that ei = e, fi = f for all i. The stabilizer of p in G is
the decomposition group Dp, and the order of Dp is ef .

Proof. Let p, p′ divide p and suppose p′ is not a Galois conjugate of p.
By the Chinese remainder theorem, there is a ∈ O such that a ∈ p
but a ≡ 1 (mod σ(p′)) for all σ ∈ G. Then NK/Q(a) ∈ p ∩ Z = p
(this intersection is correct because p is prime); but for all σ, σ(a) /∈ p′;
thus NK/Q(a) =

∏
σ∈G σ(a) /∈ p′, because p′ is prime. But this is a

contradiction because p ⊂ p′.
Now fix p. Since G/Dp is in bijection with the set of pi, which has

n/(ef) elements, it follows that |Dp| = ef . �

Proposition 2.22. Suppose there is α ∈ O such that O = Z[α]. Let
f ∈ Z[X] be the minimal polynomial of α. Then p is ramified if and
only if the image f̄ of f in Fp[X] has multiple roots.

Proof. We know that p is ramified if and only if O/pO has nilpotents.
But O/pO = Z[X]/(f, p) = Fp[X]/(f̄) which has nilpotents if and only
if f̄ has multiple roots. �

In particular, if O = Z[α] then the set of ramified primes is finite.
This is in fact always the case. In fact, using localization, it is easy to
see that if α is any integral element that generates K, so that N = [O :
Z[α]] is finite, then the above criterion remains valid for any p prime
to N . Let p be an unramified prime in any case and p|p in O. Then
|Dp| = |Gal(k(p)/Fp)|. On the other hand, since Dp stabilizes both O
and p, there is a natural map rp : Dp → Gal(k(p)/Fp).

Proposition 2.23. This map is surjective (hence an isomorphism
when p is unramified. In particular, there is a unique element φp ∈
Dp ⊂ Gal(K/Q) with the property that rp(φp)(x) = xp for all p ∈ k(p).

(If K/Q is not abelian, then we have to write φp; in general φσ(p) =
σφpσ

−1.)

Corollary 2.24. Suppose K = Q(
√
q). Then φp =

(
q
p

)
∈ {±1} '

Gal(K/Q).

Proof. (of proposition) Let L be the fixed field of Dp, p
′ the prime of L

contained in p. Then p is the unique prime above p′; if there were two,
say p1 and p2, the argument above would show that Gal(K/L) = Dp

takes one to the other, but Dp stabilizes p. So f = [K : L] = [k(p) :
k(p′)] which implies that k(p′) = Fp.



COURSE COLUMBIA 2019 15

Now let x ∈ OK , x̄ ∈ k(p) its reduction, and assume x̄ generates
k(p) over Fp. Let f be the minimal polynomial of x, f̄ its reduction,
ḡ the minimal polynomial of x̄; thus ḡ|f̄ . Since Dp acts transitively on
the roots of f , it also acts transitively on the roots of f̄ , hence contains
a subgroup acting transitively on those of ḡ. This implies that rp is
surjective. �

3. Day 3: Pell’s equation and units

• (a) Pell’s equation (Flath, Hindry)
• (b) Ideals and units

We fix K, O = OK . The group of ideals I(K) contains the subgroup
of principal ideals P (K), which is isomorphic to K×/O×, since (uα) =
(α) whenever u is a unit. The ideal class group Cl(K) = I(K)/P (K)
is a major invariant of the number field K. We have already used the
fact that Cl(K) is finite. This week we will consider in detail the case

where [K : Q] = 2, so K = Q(
√
d), where d is a square-free integer.

There are two cases: d > 0 (K is a real quadratic field) or d < 0 (K
is an imaginary quadratic field. The TD will prove finiteness of Cl(K)
when K is imaginary quadratic.

I will start by talking about units in the imaginary case. The dis-
cussion is short.

Lemma 3.1. Let K be a number field, u ∈ O×K. Then NK/Q = ±1.

Proof. Write N = NK/Q. Suppose uv = 1, v ∈ O. Then 1 = N(uv) =
N(u)N(v). Both N(u) and N(v) are in Z, and the equation says
N(u), N(v) ∈ Z×. So it’s clear. �

We take d > 0 and consider K = Q(
√
−d); then O = {a + b

√
−d}

or O = {a + bη} with η = 1+
√
−d

2
, depending on −d (mod 4). Now

N(a+ b
√
−d) = a2 + bd2 and N(a+ bη) = a2 + ab+ b2(1 + d)/4, in the

latter case d ≥ 3. If either |a| > 1 or |b| > 1 then the norm is > 1, so
the group of units in OK is finite; thus O× consists of roots of unity.
If there is a primitive nth root of 1 then there is a pth root of 1 for
any p|n, but we know that [Q(ζp) : Q] = p − 1, so p ≤ 3. One can
also check that [Q(ζ8) : Q] = 4. On the other hand if d = 1 we get 4th

roots of 1, and if d = 3 we get 6th roots of 1, since
√
−3+1
2

= e
2πi
6 . And

so we find |O×| = 4 if d = 1, |O×| = 6 if d = 3, |O×| = 2 otherwise.

The situation is very different forK = Q(
√
d) with d > 0. There is no

difficulty in finding solutions to the equation x2−dy2 = 1. For example,
if d = 6, (5, 2) is a solution; if d = 3, (7, 4); if d = 5, (9, 4). IfN(u) = ±1

with u = a + b
√
d, a, b ∈ Z then ±1 = u · su with su = a − b

√
d
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which implies that u is a unit. Here u 7→ su is the non-trivial Galois
automorphism of K. Each of these examples is of infinite order in the
unit group of O = OK ; indeed, (a + b

√
d)2 = (a2 + b2d + 2ab

√
d) and

a2 + b2d > a.

Theorem 3.2. Let d be a positive integer that is not a square. Then
there exists a non-trivial solution (a1, b1), with a1, b1 ∈ Z, a1 > 0, b1 >
0, of Pell’s equation x2 − dy2 = 1, such that all positive solutions are
given by (an, bn) with (an + bn

√
d) = (a1 + b1

√
d)n, n = 1, 2, . . . ; and

every solution is of the form (±an,±bn) for some n.

We begin by constructing one non-trivial solution.

Lemma 3.3. Let α ∈ R and N ≥ 1 an integer. Then there exists a
rational number p

q
∈ Q such that

|α− p

q
| ≤ 1

qN
and 1 ≤ q ≤ N.

Proof. Cut the interval [0, 1] into N intervals [ i
N
, i+1
N

], i = 0, . . . , N−1.
The set jα − [jα], j = 0, . . . , N contains N + 1 elements, so two of
them have to be in the same interval, i.e. there exist 0 ≤ k < j ≤ N
such that

|jα− [jα]− (kα− [kα])| = |(j − k)α− ([jα]− [kα])| ≤ 1

N
.

Let p = [jα]− [kα], q = j − k; then we have |α − p
q
| ≤ 1

qN
and clearly

1 ≤ q ≤ N . �

The Corollary is due to Dirichlet:

Corollary 3.4. Let α ∈ R\Q. Then there exist infinitely many p
q
∈ Q

such that

|α− p

q
| ≤ 1

q2
.

Proof. Let N1 ≥ 1 and apply the lemma to find a fraction such that

|α− p1
q1
| ≤ 1

q1N1

≤ 1

q21
.

Since α is irrational, the left-hand side is non-zero, so there is an N2

such that 1/N2 < |α− p1
q1
|. So there is a second fraction such that

|α− p2
q2
| ≤ 1

q2N2

≤ 1

q22
.

By the choice of N2, we have

|α− p2
q2
| ≤ 1

q2N2

≤ 1

N2

< |α− p1
q1
|
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so p2
q2
6= p1

q1
. We continue by induction. Note that we can choose a

subset with q1 < q2 < . . . . �

Proposition 3.5. Pell’s equation has a non-trivial solution (r, s).

Proof. We apply Dirichlet’s corollary to α =
√
d /∈ Q. Then there are

infinitely many integers (a, b) such that |
√
d− a

b
| ≤ 1

b2
; so

|
√
d+

a

b
| ≤ 2

√
d+ |a

b
−
√
d| ≤ 2

√
d+

1

b2
;

thus |a2 − db2| ≤ b2 · 1
b2
· (2
√
d + 1

b2
) ≤ 2

√
d + 1. The set of integers

between −(2
√
d+1) and 2

√
d+1 is finite, but there are infinitely many

pairs (a, b) such that a2 − db2 is an integer in this interval; so there is
an integer c such that the equation a2 − db2 = c has infinitely many
distinct solutions. Indeed, there are even infinitely many congruent
solutions modulo c (i.e., ai ≡ aj (mod c), bi ≡ bj (mod c)). Take two
such solutions (a1, b1) and (a2, b2). and set

u = r + s
√
d =

a1 + b1
√
d

a2 + b2
√
d
.

r2 − ds2 = N(u) =
a21 − db21
a22 − db22

=
c

c
= 1.

Note that s 6= 0; otherwise a1 + b1
√
d = ±(a2 + b2

√
d) and they would

not be distinct. So we will be done if we can show that (r, s) ∈ Z× Z.
We compute

r + s
√
d =

a1a2 − db1b2
c

+
b1a2 − a1b2

c

√
d.

But a1a2− db1b2 ≡ a21− db21 ≡ 0 (mod c) and b1a2− a1b2 ≡ b1a1− a1b1
(mod c).

�

Now we prove the theorem. Define

L : O× → R2;L(α) = (log(|α|), log(|s(α)|)).
Proposition 3.6. The map L has the following properties.

(a) L is a homomorphism.
(b) kerL = ±1.
(c) The image of L is a discrete subgroup
(d) The image of L is contained in the line x+ y = 0.

Proof. Property (a) follows from the property of log. Next, (d) follows
from

log(|α|) + log(|s(α)| = log(|αs(α)| = log(|N(α)|) = log(1) = 0.
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The hard properties are (b) and (c). Let B be a ball around 0 in
R2. We show that L−1(B) is finite. This implies that the kernel is
finite, hence consists of roots of 1, necessarily ±1; it also shows that
the image is discrete, since we can shrink the ball to guarantee that
L−1(B) = kerL.

Let B be the ball of radius C. Now an element α ∈ O× satisfies
the polynomial X2 − Tr(α)X + N(α) ∈ Z[X]. Suppose L(α) ∈ B.
Then |α| < exp(C), s(|α)| < exp(C), so |Tr(α)| < 2 exp(C), whereas
N(α) = ±1. Thus there are only finitely many possible polynomials,
hence finitely many possible α.

�

Finally

Lemma 3.7. Any discrete subgroup G ⊂ R is of the form Zω for some
ω.

This is easy: if G 6= 0, take ω to be the smallest positive element.
(This exists because otherwise there would be a limit point, hence G
would not be discrete.) If x ∈ G there is m ∈ Z such that x ∈
[mω, (m+ 1)ω[; but then 0 ≤ x−mω < ω ⇒ x = mω.

Now to prove the theorem, let ω be a smallest element of Im(L)
in the line x + y = 0, say ω = L(u). In fact, we can assume u =

a1 + b1
√
d which is the smallest positive element of Z[

√
d] ⊂ R; this

is not generally going to have a1 > 0, b1 > 0, but the theorem follows
easily by considering the four possible pairs of signs.

In general, let K be any number field, KR = K ⊗Q R, a real vector
space of dimension n = [K : Q]. The trace defines a non-degenerate
bilinear form B(x, y) = Tr(xy) : KR ⊗ KR → R, which implies that
the nilpotent radical of KR is zero; indeed, if n ∈ KR is nilpotent then
so is nx for any x, but then Tr(nx) = 0. So KR is a finite-dimensional
semisimple R-algebra, which means it is of the form Rr1×Cr2 for some
integers with r1 + 2r2 = n.

Theorem 3.8. (Dirichlet’s unit theorem) The group O×K is isomorphic
to µK × Zr1+r2−1, where µK is the finite group of roots of unity in K.

The proof uses the logarithm map as before:

L : O× → Rr1+r2 ;L(α) = (log(|σ(α)|); log(|τ(α)2|)σ),

where σ (resp. τ) runs through the set of real (resp. complex) em-
beddings of K, and the argument is that the image is discrete and
contained in the subspace

∑
xi = 0, and the quotient is compact.
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4. Day 4: Binary quadratic forms and ideal classes

• (a) Classification of quadratic forms
• (b) principal ideals and class groups

4.1. Definite binary quadratic forms. A binary quadratic form is an
expression Q(X, Y ) = aX2 + bXY + cY 2. We will always assume
a, b, c ∈ Z and are relatively prime, and Q(X, Y ) is then called primi-
tive. Gauss’s Disquisitiones Arithmeticae is largely devoted to the the-
ory of these forms, especially in the definite case where the discriminant
∆ = b2 − 4ac < 0. Let K = Q(

√
∆), O = OK . Assume K = Q(

√
−d)

for some square-free positive d. We can write O = Z ⊕ Zα where

α =
√
−d if −d ≡ 2, 3 (mod 4) or α = 1+

√
−d

2
if −d ≡ 1 (mod 4). The

norm NK/Q defines a primitive binary quadratic form by

N(X + αY ) = X2 + TrK/Q(α)XY +NK/Q(α)Y 2 = X2 + dY 2

or X2 +XY +
1 + d

4
Y 2.

The discriminants are respectively −4d and −d. More generally, if
I ⊂ O is an ideal, it can be written as Zβ ⊕Zγ and defines the binary
quadratic form QI = N(βX + γY ). Obviously this depends on the
choice of basis; but we can define an equivalence relation:

Definition 4.1. We write Q ∼ Q′, and say Q is equivalent to Q′, if

there exists g =

(
r s
t u

)
∈ GL(2,Z) such that Q′(X, Y ) = Q(rX +

sY, tX + uY ). Say Q is strongly equivalent to Q′ if we can take g ∈
SL(2,Z), i.e. det g = 1.

Since GL(2,Z) is a group, this is obviously an equivalence relation.
If Q ∼ Q′ then the discriminants of Q and Q′ are equal. Indeed, let M

be any symmetric 2× 2 matrix, and define QM =
(
X Y

)
M

(
X
Y

)
. If

M =

(
a b

2
b
2

c

)
then QM = aX2+bXY +cY 2 has discriminant b2−4ac =

−4 det(M). But if Q′(X, Y ) = Q(rX + sY, tX + uY ) then

Q′ =
(
X Y

)
· tg ·M · g ·

(
X
Y

)
= Q[g]M ,

where [g]M :=t gMg. So the discriminant of Q′ is −4 det([g]M) =
−4 detM .

Note that QI is not generally primitive. The correct normalization
will be discussed in the homework. We start with some elementary
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remarks about quadratic forms with discriminant −d < 0. Note that

4aQ(X, Y ) = (2aX + bY )2 + dY 2

so since d > 0, 4aQ > 0 unless Y = 0 and 2aX + bY = 0 (so X = 0).
So we assume a > 0 (and so c > 0).

Question 4.2. What integers m can be represented by the (primitive,
positive-definite) quadratic form Q? That is, for what m does the
equation Q(X, Y ) = m have a solution?

Obviously m has to be non-negative.

Lemma 4.3. Suppose Q and Q′ are equivalent. Then they represent
the same integers.

Proof. This is obvious. If Q′(X, Y ) = m, then Q(rX + sY, tX +uY ) =
m, and the reverse is true if we replace the matrix g above by its
inverse. �

Obviously, if α, γ ∈ Z are both divisible by p, then Q(α, γ) is divisible
by p2. Say thatm is properly represented byQ if there exist integers α, γ
with no common factors. Obviously, a and c are properly represented
(by (1, 0) and (0, 1) respectively).

Suppose m is properly represented, m = aα2 + bαγ + cγ2. Since
GCD(α, γ) = 1, there exist β, δ such that αδ− βγ = 1; i.e. the matrix

g =

(
α β
γ δ

)
∈ SL(2,Z). Let X ′ = αX + βY, Y ′ = γX + δY . Then

writing Q = QM as above, Q is strongly equivalent to Q′ = Q[g]M and
they have the same discriminant ∆. But explicitly,

[g]M =

(
α γ
β δ

)(
a b

2
b
2

c

)(
α β
γ δ

)
=

(
a′ b′

2
b′

2
c′

)
where a′ = α2a + αγb + γ2c = Q(α, γ) = m. This incidentally gives
another proof that Q′ represents m, which we started by assuming was
represented by Q.

But

∆ = −4 det([g]M) = (b′)2 − 4a′c′ = (b′)2 − 4mc′ ≡ (b′)2 (mod 4m).

Thus if m is represented by a quadratic form of discriminant ∆, then
∆ is a square modulo 4m. Conversely, if ∆ is a square modulo 4m,
say ∆ = b2 − 4mc, for some b and c, then the form mX2 + bXY + cY 2

properly represents m and has discriminant ∆. Thus

Proposition 4.4. An integer m is properly represented by some form
of discriminant ∆ if and only if ∆ is a square modulo 4m.
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Example 4.5. Take ∆ = −4. So a prime p is represented by a form
of discriminant −4 if and only if −4 is a square modulo 4p if and only
if −1 is a square modulo 4p.

We work this out. If p = 2 then −4 = 4 (mod 8) is a square. Of
course −4 is a square modulo 4, so the condition if p is odd is that
−1 is a square modulo p. Thus an odd p is represented by a form of
discriminant −4 if and only if p ≡ 1 (mod 4).

The form Q(X, Y ) = X2 + Y 2 has discriminant −4.

Lemma 4.6. Every form of discriminant −4 is strongly equivalent to
Q.

Admitting this Lemma, we obtain Gauss’s theorem:

Theorem 4.7. An odd prime p can be written as the sum of two squares
if and only if p ≡ 1 (mod 4).

The lemma is proved as a consequence of Gauss’s reduction theorem:

Theorem 4.8. Each strong equivalence class of definite binary qua-
dratic forms has a unique representative that is reduced in the sense
that

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

The proof will be given later.

Corollary 4.9. The set of strong equivalence classes of (positive) def-
inite binary quadratic forms with (negative) discriminant ∆ is finite.

Proof. Since −∆ = 4ac−b2 ≥ 4a2−b2 ≥ 4a2−a2 = 3a2 so a ≤
√
|∆|/3.

The set of such a is finite, and since |b| ≤ a the set of possible b’s is
finite, and for each pair (a, b) c = (b2 − ∆)/4a is determined. So the
corollary is obvious. �

In particular, if ∆ = −4, then a = 1 is the only possibility, and
therefore b = 0 (the case b = 1 is inconsistent with 4|b), which proves
the Lemma.

It remains to prove the reduction theorem. This is a simple algorithm
in linear algebra. Suppose Q is not reduced. We let

S(a, b, c) = |b|+ a;

this is a positive integer. First suppose c < a or c = a but b < 0.

Write X ′ = −Y , Y ′ = X (the matrix g =

(
0 −1
1 0

)
∈ SL(2,Z)).

Then Q ∼ Q′ = a(−Y )2 + bX(−Y ) + cX2 = a′X2 + b′XY + c′Y 2 with
a′ = c, b′ = −b, c′ = a. So we have eliminated the condition.
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Now suppose a ≤ c but b doesn’t satisfy −a < b ≤ a. There is a
unique b′ ≡ b (mod 2a) in the range (−a, a], say b′ = b + 2ak, c′ =

Q(k, 1), and set X ′ = X + kY , Y ′ = Y (the matrix g =

(
1 k
0 1

)
∈

SL(2,Z)). Then Q′(X, Y ) = Q(X ′, Y ′) = a(X+kY )2 + b(X+kY )Y +
cY 2 = a′X2 + b′XY + c′Y 2 with b′, c′ as above and a′ = a.

Each time the algorithm is applied, we get a new triple with |b′|+a′ ≤
|b|+ a, in other words S(a′, b′, c′) ≤ S(a, b, c). Moreover, we only have
equality at this stage if |b′| = |b|, meaning b = −a, so b′ = a = a′.

Now if c′ > a′ = a we are done. Also, if c′ = a′, and b′ = a′, we are
again done.. So assume either

c′ < a′ and b′ = a′

or

c′ = a′ and |b′| < a.

In the latter situation and b′ ≥ 0 we are done; if b′ < 0 we apply the
first operation again and then we have the reduced triple (c′,−b′, a′).
On the other hand, if c′ < a′ we apply the first operation again, and
get a new triple (a′′, b′′, c′′) = (c′,−b′, a′) with S(a′′, b′′, c′′) < S(a′, b′, c′)
(strict inequality) and a′′ < c′′. However, b′′ may not be in (−a′′, a′′]. So
at each stage we either are one step from finishing or we have reduced
the size S(a, b, c). Since we cannot reduce the size indefinitely, the
algorithm can only be applied finitely many times, which means after
a finite time the form is reduced.

This completes the proof of the existence of a reduced form in each
strong equivalence class. The proof of uniqueness is sketched after the
treatment of an example.

Example. Suppose ∆ = −3. Again we have a = 1, but now b = 1
(mod 4), so b = 1, and then c = 1. The only form of discriminant ∆
is the norm form for OK where K = Q(

√
−3). The proposition says

that a prime p is a norm of an element of OK if and only if −3 is a
square mod 4p. If p = 2 the proposition says that 2 is not represented
by X2 + XY + Y 2. On the other hand, −3 is a square mod 4, so (by
the Chinese Remainder Theorem) if p is odd, the assertion is that p is
a norm from OK if and only if −3 is a square mod p; i.e. if and only if
Fp[X]/(X2 + 3) = (Fp)2. But if p is odd, OK/p = Z[

√
−3]/pZ[

√
−3] =

Fp[X]/(X2+3). So the condition is that p is a norm fromOK if and only
if (pOK) is a product of two prime ideals p1 and p2. Say p = N(x);
then xs(x) ∈ (p) = p1p2 ⊂ p1. Thus we can assume x ∈ p1; but
N(x) = N(p1) which implies that (x) = p1. And indeed, |Cl(K)| = 1,
in other words OK is a principal ideal domain.
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This is explained as follows. Let d be a positive square-free integer.
If −d ≡ 1 (mod 4), let ∆d = −d; otherwise, let ∆d = −4d. The norm
form on OK , where K = Q(

√
−d), has discriminant ∆d.

Proposition 4.10. There is an injection from the ideal class group
Cl(K) to the set of strong equivalence classes of binary quadratic forms
of discriminant ∆d. In particular, Cl(K) is finite.

A part of the proof of this proposition is contained in Homework 6
(2022 course).

4.2. Uniqueness of the reduced form. The shortest proof of uniqueness
is along the following lines.
Step 1. Suppose Q = aX2 + bXY + cY 2 is reduced. Then the two
smallest non-zero integer values taken by Q are Q(±1, 0) = a and
Q(0,±1) = c (which may be equal).

This is proved by using the inequalities satisfied by the coefficients
to show that any Q(x, y) with different values of x and y is strictly
larger than a or c – apart from the case a = b = c where Q(1,−1) =
Q(1, 0) = a.
Step 2. Thus ifQ is equivalent to the reduced formQ′ = a′X2+b′XY +
c′Y 2 it follows that a = a′ and c = c′. Since ∆ = b2−4ac = (b′)2−4a′c′,
we also have b = ±b′.
Step 3. Finally, a separate argument is needed to show that if Q and
Q′ are strongly equivalent and reduced then b = b′.

A more enlightening argument is based on the geometric properties
of the group SL(2,Z). This group acts on the upper half plane H =
{τ = x+ iy | y > 0} ⊂ C by the formula(

a b
c d

)
(τ) =

aτ + b

cτ + d
.

We consider the subset D ⊂ H consisting of τ = x+ iy such that

−1

2
< x ≤ 1

2
; |τ |2 = x2 + y2 ≥ 1; x2 + y2 > 1 if x < 0.

(Draw a picture of D.) Then we show successively

Proposition 4.11. The group SL(2,Z) is generated by the two matri-
ces

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

Proposition 4.12. Every τ ∈ H is of the form γ(τ0) for some γ ∈
SL(2,Z) and a unique τ0 ∈ D. (D is a fundamental domain for the
action of SL(2,Z) on H.)
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Proposition 4.13. Every positive-definite binary quadratic form Q
with integer coefficients can be written uniquely in the form

Q(X, Y ) = a(X − τY )(X − τ̄Y )

for some τ ∈ H. Moreover, Q is reduced if and only if τ ∈ D.

The proofs of these propositions are not difficult but they will not
be given here. It is enlightening to relate the “boundary cases” in the
definition of reduced forms to the boundary of the set D.

5. Day 5: Cyclotomic fields

• (a) Fermat’s last theorem
• (b) Integers in cyclotomic fields
• (c) Cyclotomic reciprocity
• (d) Cyclotomic units

Fermat’s Last Theorem was written in the margin of his copy of
Diophantus in 1637 and was proved by Andrew Wiles in 1995.

Theorem 5.1. (Wiles) Let n be an integer greater than 2. Let x, y, z ∈
N satisfy

xn + yn = zn.

Then xyz = 0.

The proof involves every technique presented in this course and many
more besides. The methods introduced by Wiles and Taylor have has-
tened the solution of a number of other problems that appeared in-
tractable. I will use the theorem as an excuse to talk about the alge-
braic number theory of cyclotomic fields, which brings me to the middle
of the 19th century. First, the case proved by Fermat.

Theorem 5.2. Fermat’s last theorem is true for n = 4.

Proof. This is an illustration of the method of infinite descent. It’s
enough to show that the equation x4 + y4 = z2 has no positive integer
solutions. So assume (x, y, z) is a solution, with z > 0 as small as
possible. We are going to construct a new triple with smaller z.

If any pair (x, y), (y, z) or (x, z) has a common divisor d, then d
divides the third number; so (by minimality of z) any of the two are
relatively prime. Let a = x2, b = y2, so a2 + b2 = z2, a relatively
prime Pythagorean triple. Either a or b is even, but not both – say
b is even. Then it is easy to show (exercise!) that there exist u > v
relatively prime integers such that u2 − v2 = a, 2uv = b, u2 + v2 = z.
Since a is an odd square, a ≡ 1 (mod 4), so u is odd and v is even, say
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v = 2w, y2 = b = 4uw. But (u,w) = 1, so both u and w are squares,
say u = α2, w = β2. On the other hand, u2 − v2 = a = x2 implies that

x2 + v2 = u2

and we have another relatively prime Pythagorean triple. Hence there
are relatively prime integers e > f with

e2 − f 2 = x, 2ef = v = 2w = 2β2, e2 + f 2 = u = α2.

Again, ef = β2 implies e = g2, f = h2. And thus we have

e2 + f 2 = u = α2 ⇒ g4 + h4 = α2.

So (g, h, α) is a solution to x4 + y4 = z2. But

α ≤ α4 = u2 = z − v2 < z.

Thus α < z and we have a new solution with smaller z, which contra-
dicts our assumption. �

Now if Fermat’s last theorem is true for m, it is true for any number
divisible by m. It follows that in order to prove Fermat’s last theorem,
it’s enough to prove it for all odd primes p. So suppose henceforward
n = p is prime. Let K = Kp be the splitting field of Pp(X) = Xp − 1,
and let ζ 6= 1 be a root of Pp. We know that Pp = (X − 1)Φp, with
Φp(X) = (Xp−1 +Xp−2 + · · ·+X+1), and that Φp is irreducible. Then

K = Q[ζ], and Gal(K/Q)
∼−→(Z/pZ)×. Let O = OK . Obviously

Z[ζ] ⊂ O, and we will show that the two are equal. Over O, the
Fermat equation becomes

p−1∏
i=0

(X + ζ iY ) = Zp

since Xp + 1 =
∏p−1

i=0 (x + ζ i). We return to this equation tomorrow,
after developing the basic theory of cyclotomic fields.

First, a fact promised the first day.

Lemma 5.3. Let n ∈ N, p a prime not dividing n, k a field of char-
acteristic p. The cyclotomic polynomial Pn = Xn − 1 ∈ k[X] has no
multiple roots. In particular, if q = pr, n = q − 1, the q − 1 elements
of Fq are the distinct roots of Pq−1, and therefore F×q is a cyclic group.

The proof is obvious: the derivative P ′n = nXn−1 and has no common
roots with Pn unless n = 0 in k. For the final assertion, F×q is a group of
order q−1, hence every element is of order dividing q−1 by Lagrange’s
theorem; but since it is the multiplicative group of a field, this means
every element is a root of Pq−1. It follows that any primitive root of
Pq−1 is a cyclic generator of F×q .
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Define λ = 1− ζ.

Proposition 5.4. The ring Z[ζ]/(λ)Z[ζ] is isomorphic to Fp. For any

1 ≤ i ≤ p− 1 the element ηi = 1−ζi
λ

is a unit in Z[ζ]. We have

p =

p−1∏
i=1

(1− ζ i) = NK/Q(λ)

and (p) = (λ)p−1.

Proof. Of course Φp =
∏p−1

i=1 (X − ζ i), so

p = Φp(1) =

p−1∏
i=1

(1− ζ i) = NK/Q(λ).

Now ζ ≡ 1 (mod λ), so every element of Z[ζ] is congruent to an element
of Fp modulo λ; i.e., the inclusion Fp ↪→ Z[ζ]/(λ)Z[ζ] is surjective.

As for the ηi, we can write ηi =
∑i−1

j=0 ζ
j ∈ Z[ζ]. But since the group

of p-th roots of unity is cyclic of order p, any element other than 1 is

a generator. So ζ = (ζ i)b for some b. Thus η−1i = 1−(ζi)b
1−ζi =

∑b−1
j=0 ζ

ij ∈
Z[ζ]. It follows that ηi ∈ Z[ζ]× for any i, and the rest follows.

�

It follows that (λ) ∩ Z ⊃ (p), and since (p) is a maximal ideal and
(λ) 6= (1), we even have (λ) ∩ Z = (p).

Proposition 5.5. Z[ζ] is the ring of integers in K. In particular, p is
the only ramified prime in Kn

Proof. Let α =
∑p−2

i=0 aiζ
i ∈ OK , with ai ∈ Q; we show each ai ∈ Z.

Note that

TrK/Qζ
i = −1, i = 1, . . . , p− 1; TrK/Qζ

0 = p− 1.

Thus

TrK/Q(λα) =

p−2∑
i=0

aiTrK/Q(ζ i − ζ i+1)

and the ai terms cancel for i > 0, but the a0 term gives (p − 1 −
(−1))a0 = pa0. On the other hand, TrK/Q(λα) ∈ (λ) ∩ Z = (p), which
implies a0 ∈ Z. Thus α1 = ζ−1(α − a0) ∈ OK , and by induction we
show that all the ai ∈ Z.

For the last claim, we know that q is ramified if and only if Φp has
multiple roots modulo q; but this is only possible when q = p. �
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The Galois group of K/Q is isomorphic to Fp×. The element −1
corresponds to the only element c ∈ Gal(K/Q) of order 2, and since it
takes ζ to ζ−1 = ζ̄, it induces complex conjugation on K. Let K+ be
the fixed field of {1, c}; every element of K+ is contained in R.

5.1. Cyclotomic reciprocity. We have seen that the problem of qua-
dratic reciprocity, namely the determination of whether or not a num-
ber a is a square modulo a prime q, can be translated into a question
about the decomposition of q into prime factors in the integer ring
of Q(

√
a). Cyclotomic reciprocity determines the decomposition of a

prime q in the cyclotomic field Q(ζn), where ζn is a primitive nth root
of 1. We will solve this problem when n = p is a prime, and we write
ζ = ζp = e2πip.

The integer ring O is just Z[ζ], so we need to study

Z[ζ]/(qZ[ζ]) = Z[X]/(q,Φp) = Fq[X]/(Φp).

We assume q 6= p. Now the polynomial Φp(X − 1) = Xp − 1 = Pp
has derivative pXp−1 in Fq[X]. The only root of P ′p is 0, which is not
a root of Pp. It follows that Φp has no multiple roots, and therefore
the ring Z[ζ]/(qZ[ζ]) has no nilpotents. So if q =

∏g
i=1 q

e
i we see that

e = 1; no prime other than p is ramified in Q(ζ). Thus we have
fg = p− 1 = [Q(ζ) : Q], where f = [k(qi) : Fq] for any i. The problem
of cyclotomic reciprocity is thus to determine f , in other words the
order of Gal(k(qi)/Fq).

Let φq ∈ Aut(k(qi)) be the Frobenius substitution defined by

φq(x) = xq.

This is an automorphism and its set of fixed elements is the set of
roots of the polynomial A(x) = xq − x. Again, A′ = 1 and so A has no
multiple roots, so the fixed field is just Fq. One learns in Galois theory
that φq generates Gal(k(qi)/Fq) in particular that φq is of order f in the
Galois group. On Day 2 we learned that φq lifts to a unique generator,
also called φq, of the decomposition group Dq ⊂ Gal(Q(ζ)/Q).

Now for all a ∈ Z[ζ] we have

(5.6) φq(a) ≡ aq (mod qi), i = 1, . . . , g.

In particular,

(5.7) φq(ζ) ≡ ζq (mod qi), i = 1, . . . , g.

On the other hand, in terms of the canonical isomorphism

ω : Gal(Q(ζ)/Q)
∼−→Fp×
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we have φq(ζ) = ζω(φq), so

(5.8) ζω(φq) ≡ ζq (mod qi), i = 1, . . . , g.

But since the roots of unity remain distinct modulo qi, this means that
q = ω(φq).

We have thus proved the following theorem when n is prime:

Theorem 5.9. (Cyclotomic reciprocity) Let K = Q(ζn), q a prime
not dividing n. Then q is unramified in K and factors as the product
q =

∏g
i=1 qi, with f = [k(qi) : Fq] for any i and fg = [K : Q] = ϕ(n) =

|(Z/nZ)×|. The Frobenius element φq ∈ Gal(K/Q) is then identified
with the image of q modulo n, via the canonical isomorphism

Gal(K/Q)
∼−→(Z/nZ)×.

The integer f is then the smallest positive integer such that qf ≡ 1
(mod n).

The proof for general n is not much harder than the proof for n
prime. The chief difficulty is showing that Z[ζn] is the full ring of
integers in Q(ζn). It is certainly not difficult but it takes too long for
a six-week course.

5.2. Cyclotomic units.

Lemma 5.10. Fix integers m,M . The set C(m,M) of algebraic inte-
gers α of degree ≤ m, all of whose Galois conjugates in C have absolute
value < M , is finite. In particular, if α is an algebraic integer all of
whose Galois conjugates have absolute value 1, then α is a root of unity.

Proof. The set C(m,M) is the set of roots of monic polynomials over Z
whose coefficents are bounded; this is a finite set. That gives the first
statement. As for the second, if α has the indicated property, then so
do all powers αm. Thus the powers of α belong to a finite set, which
means α is a root of unity. �

Lemma 5.11. The group O× is generated by roots of unity and [O×]+,
the units in K+.

Proof. Consider the map a : O× → O× that takes u to a(u) = u/c(u).
Since c commutes with all the Galois automorphisms s ofK, we see that
|s(a(u))| = |s(u)|/s(c(u))| = 1. Thus the image of a is contained in the
group µ of roots of unity. Let φ : O× → µ/µ2 be the induced map. The
kernel contains [O×]+. Suppose u ∈ ker(φ); thus a(u) = z2 = a(z) for
some z ∈ µ. Thus z̄u ∈ ker(a) = [O×]+, and u ∈ µ · [O×]+. Similarly,
µ·[O×]+ ⊂ ker(φ), which implies that [O× : µ·[O×]+] = 1 (if φ is trivial)
or 2 (if φ is surjective). So it remains to show that φ is not surjective.
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Suppose the contrary; then there exists a unit u with c(u) = ζ ′u and
ζ ′ is not a square. Now µ = {±1}· < ζ >, µ2 =< ζ >. In other words,
ζ ′ = −ζk for some k. If as before we write u =

∑p−2
i=0 aiζ

i, with ai ∈ Z,

then c(u) =p−2
i=0 aiζ̄

i. We have

u ≡ c(u) ≡
p−2∑
i=0

ai (mod (λ))

which implies that −1 ≡ 1 (mod (λ)), and that’s impossible because
p 6= 2. �

6. Day 6: Fermat’s last theorem

• (a) Class groups of cyclotomic fields
• (b) Regular primes
• (c) Fermat’s last theorem for regular primes (first case)
• (d) Gauss’s fourth proof of quadratic reciprocity (Flath)

Definition 6.1. The prime p is regular if p does not divide the class
number of the cyclotomic field Kp.

Kummer proved Fermat’s Last Theorem for regular primes p. He
divided the proof into two cases, the first case where p is prime to all
of x, y, and z where xp + yp = zp, and the second case where p divides
one of the three. The first case is easier and we prove it here. We
always assume x, y, z relatively prime.

First, if p = 3, the only cubes modulo 9 are −1, 0, 1 and the only
sums of two cubes are −2, 0, 2, so the equation X3 + Y 3 = Z3 has no
non-trivial solutions mod 3 with all three factors prime to 3. If p = 5,
the only 5-th powers mod 25 are −1, 0, 1, 7,−7, and the only sums
of two 5th powers (not including 0) are −14,−8,−6,−2, 2, 6, 8, 14, so
again there are no solutions. So assume p > 5.

Suppose x ≡ y ≡ −z (mod p). Then (−z)p + (−z)p ≡ zp, hence
p | 3z, contradiction. So one of the congruences can’t hold. If x ≡ y
then x 6≡ −z and by rewriting the equation xp + (−z)p = (−y)p we can
assume x 6≡ y; i.e p - x− y.

We have seen that the equation becomes

(6.2)

p−1∏
i=0

(x+ ζ iy) = zp.

Let p be the unique prime of O dividing (p); thus p = (1− ζ i) for any
1 ≤ i ≤ p− 1.
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Lemma 6.3. The factors on the left hand side of 6.2 are relatively
prime in pairs.

Proof. We have to show there is no prime q dividing both x+ ζ iy and
x + ζjy for i 6= j. Otherwise, q | (ζ i − ζj)y = py and similarly q | px.
Since x and y are relatively prime, q = p. Thus

x+ y ≡ x+ ζ iy ≡ 0 (mod p).

Thus x+ y ∈ p ∩ Z = (p). On the other hand

zp = xp + yp ≡ x+ y ≡ 0 (mod p)

which implies p | z, contradiction. �

Lemma 6.4. For every α ∈ O, αp ∈ Z + pO.

Indeed, if α =
∑p−2

0 aiζ
i with ai ∈ Z then

αp ≡
p−2∑
0

api (mod p)

and the sum on the right is in Z.
Now we return to the proof of the first case. 6.2 gives us an equality

of ideals in O:
p−1∏
i=0

(x+ ζ iy) = (z)p.

By 6.3, each factor on the left is a p-th power, say

(x+ ζ iy) = Ipi .

Since p is regular and Ii is of order p in the class group, this implies
that Ii = (αi) for some i. Write α = α1. We have x + ζy = uαp for
some unit u. By 5.11 we can write u = ζrv where v = v̄. By the
previous lemma, we have αp ≡ a (mod p) for some a ∈ Z. Thus

x+ ζy = uαp ≡ ζrva (mod p).

Similarly

x+ ζ−1y = x+ ζ̄y = ūᾱp ≡ ζ−rva (mod p).

Combining these two, we have

ζ−r(x+ ζy) ≡ ζr(x+ ζ−1y) (mod p),

in other words

(6.5) x+ ζy − ζ2rx− ζ2r−1y ∈ pO.
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Suppose the four powers of ζ are distinct. Then since p > 5, they are
part of a Z-basis of O, hence their images mod p are linearly indepen-
dent over Fp. It follows that p | x and p | y, which is a contradiction.
Thus two of the elements of {1, ζ, ζ2r, ζ2r−1} are equal, and we know
1 6= ζ. We consider the remaining possibilities:

• If ζ2r = 1, then 6.5 gives ζy − ζ2r−1y = 0 which implies p | y.
• if ζ2r−1 = 1 (equivalently ζ = ζ2r), then 6.5 gives

(x− y)− (x− y)ζ ≡ 0 (mod p),

and as above this implies p | (x− y), but we already eliminated
this option.
• If ζ = ζ2r−1 then 6.5 gives x − ζ2x ≡ 0 (mod p) which implies
p | x, again a contradiction.

This completes the proof.
Regular primes have been tabulated since the time of Kummer. The

first few are
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83,

89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191,
193, 197, 199.

The first irregular primes are 37, 59, 67, 101, 103, 131, 149. The
study of class groups of Kp when p is irregular is the beginning of
Iwasawa theory.

6.1. Quadratic reciprocity. The Legendre symbol is a Dirichlet char-

acter a 7→
(
a
p

)
mod p. All that we are saying is that the product of

two squares in Fp× is a square, but so is the product of two non-
squares; in other words, the squares form a subgroup of index 2. So

gp =
∑p−1

a=1

(
a
p

)
ζa, where ζ is the complex number e

2πi
p , is a Gauss

sum (see Homework, week 8).

Lemma 6.6. g2p = p∗ = (−1)
p−1
2 p.

Proof. This is recognizably a change of variables proof.

g2p =

p−1∑
a=1

(
a
p

)
ζa

p−1∑
b=1

(
b
p

)
ζb =

p−1∑
a=1

(
a
p

)
ζa

p−1∑
b=1

(
ab
p

)
ζab

=

p−1∑
b=1

(
b
p

) p−1∑
a=1

ζa(b+1).
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The inner sum is Φp(ζ
b+1)− 1 = 0− 1 if b+ 1 is not divisible by p, or

= p− 1 if b+ 1 is divisible by p, i.e., if b = p− 1. So we get

g2p =

(
p− 1
p

)
· (p− 1)−

p−2∑
b=1

(
b
p

)
But

∑p−1
b=1

(
b
p

)
= 0 because there are equally many squares as non-

squares, so this becomes

g2p =

(
p− 1
p

)
· (p− 1) +

(
p− 1
p

)
=

(
−1
p

)
· p = p∗

�

Lemma 6.7. Assume p and q are distinct odd primes. Then (gp)
q−1 ≡(

q
p

)
(mod q).

Proof. Note that the previous lemma implies that gp to any even power
is in Z, so the statement is meaningful. Write O = Z[ζ], the integers
in Q(ζ). First, taking qth powers is additive in O/qO, because of the
binomial theorem. So

gqp = (

p−1∑
a=1

(
a
p

)
ζa)q ≡

p−1∑
a=1

(

(
a
p

)
)qζaq =

p−1∑
a=1

(
a
p

)
ζaq (mod qO).

Now let uq ≡ 1 (mod p). Then we can replace a by au, so auq = a in

the sum; moreover,

(
q
p

)
=

(
u
p

)
and thus

gqp ≡
p−1∑
a=1

(
au
p

)
ζa =

(
u
p

)
gq =

(
q
p

)
gp. (mod qO)

Now (gp)
q+1 = p∗(gp)

q−1, and by the above this is congruent to gp ·(
q
p

)
gp (mod qO). But by the previous lemma again, this is

(
q
p

)
· p∗,

so dividing by p∗ we get the result. �

Now we prove quadratic reciprocity in one line. We have(
p∗

q

)
≡ (p∗)

q−1
2 ≡ (gp)

q−1 ≡
(
q
p

)
(mod q).
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7. Day 7: Congruences

• (a) Solutions to congruences
• (b) Chevalley-Warning theorem
• (c) p-adic numbers

Let m ∈ N, m ≥ 1. Let P (x1, x2, . . . , xm) ∈ Z[x1, . . . , xm] be a
polynomial with integer coefficients. Suppose the equation

P (x1, x2, . . . , xm) = 0

has a solution in Zm. Then the congruence

P (x1, x2, . . . , xm) ≡ 0 (mod n)

has a solution for every integer n > 1. Conversely, if this congruence
fails to have a solution for some n > 1 then the original equation has
no integer solution.

Example 7.1. Let P (x, y, z) = x2 + 7xy − 14yz − 3. The congruence

P (x, y, z) ≡ 0 (mod 7)

is equivalent to the congruence

x2 ≡ 3 (mod 7)

and this has no solution, so the original equation has no solution.

There are, however, examples of equations that have solutions mod-
ulo n for all integers n and nevertheless have no integer (or rational)
solutions.

Example 7.2. A famous example was studied by the Norwegian Ernst
Selmer in the 1950s. Consider the Diophantine equation

3x3 + 4y3 = 5z3.

This equation has solutions modulo every prime power, and therefore
modulo every integer. But it has no rational solutions.

I will begin the argument for the former assertion, and complete it
on Day 8, and also sketch the argument for the absence of rational
solutions. I follow notes of Kevin Buzzard.

First, if p = 3, we take z = 1, y = 2; if p = 5 we take y = 1, x = 3.
If p = 2 we take x = y = z = 1.

Lemma 7.3. Let p be a prime other than 3 or 5. Then either 3, 5, 15,
or 45 is a cube modulo p.
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Proof. Let k = Fp, and consider C = k×/(k×)3. If p ≡ 1 (mod 3) then
|C| = 3; if not, then |C| = 1. In the latter case, every number is a cube
modulo p; in the former case, let a and b denote the images of 3 and 5
in the cyclic group C. If either a or b is trivial, then we are done. So
we suppose a and b are both non-trivial. If a = b, then 45 = a2b = 1;
if a 6= b, then 15 = ab = 1. �

In what follows, we seek solutions with z = 1. If x = −y then the
problem is to solve y3 = 5 mod p; so if 5 is a cube, there is a solution.
If y = 1, the problem is to solve 3x3 = 1 modulo p; so if 3 ≡ r3, then
we take x ≡ r−1. If y = 0, we have to solve 3x3 ≡ 5, or equivalently
(3x)3 ≡ 45 (mod p), so we are done if 45 is a cube.

If p = 7 we can take x = y = 1, z = 0. Finally if p > 7 and if 15 is a
cube mod p, we take z = 1, y = 5/7. Then we find

3x3 + 4 · (5/7)3 ≡ 5 (mod p)⇔ 3(7x)3 ≡ 5 · 243⇔ (7x)3 ≡ 33 · 15

which has a solution.
Before returning to this example, I want to talk about congruences

modulo a prime p that have many solutions.

Theorem 7.4 (Chevalley-Warning Theorem). Let k = Fq be a finite
field of characteristic p. Let P ∈ k[x1, . . . , xn], and suppose the de-
gree is smaller than the number of variables, i.e. deg(P ) < n. Then
the number of solutions in kn of the congruence P (x1, . . . , xn) = 0 is
divisible by p.

Corollary 7.5. Under the hypotheses of the above theorem, suppose P
is a homogeneous polynomial of positive degree. Then P (x1, . . . , xn) =
0 has a solution in kn other than the trivial solution (0, . . . , 0).

Proof. (of Corollary). Indeed, when P is homogenous, it has at least
the trivial solution. The Chevalley-Warning theorem then says that P
has at least p solutions, and p > 1. �

Lemma 7.6. Let xm := xm1
1 · · · · · xmnn be a monomial. Suppose

A(m1, . . . ,mn) =
∑
x∈kn

xm 6= 0.

Then every mi > 0 and q − 1 divides mi for all i.
In particular, suppose m1+· · ·+mn < (q−1)n. Then A(m1, . . . ,mn) =

0.

Proof. We can write

A(m1, . . . ,mn) =
n∏
i=1

A(mi) =
∏
i

(
∑
x∈k

xmi).
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So we need to show that A(m) 6= 0 implies m > 0 and is divisible by
q− 1. If m = 0, then A(0) =

∑
x∈k x

0 = |k| = q = 0. Suppose m is not
divisible by q − 1. Then there is y ∈ k× such that ym 6= 1. Then since
multiplication by y is a permutation of k,

A(m) =
∑
x∈k

xm =
∑
x∈k

(xy)m = ymA(m)

which implies A(m) = 0.
The hypothesis m1 + · · · + mn < (q − 1)n implies that at least one

of the mi < q − 1, which completes the proof. �

Now we prove the Chevalley-Warning theorem. The lemma implies
that if Q ∈ k[x1, . . . , xn] is of degree < (q − 1)n, then∑

x∈kn
Q(x) = 0.

Let P be as in the statement of the Chevalley-Warning theorem, and
let Q = 1−P q−1. Then deg(Q) = (q− 1) deg(P ) < (q− 1)n, so we see
that

∑
x∈kn Q(x) = 0. But either P (x) = 0, in which case Q(x) = 1, or

P (x) ∈ k×, in which case P (x)q−1 = 1 and Q(x) = 0. The lemma thus
implies

0 =
∑
x∈kn

Q(x) =
∑

x∈kn;P (x)=0

1 = |{x ∈ kn | P (x) = 0}|.

This implies that the cardinality on the right is divisible by p, and
completes the proof.

There are two ways to define p-adic numbers: by analysis and by
algebra. I follow Serre’s treatment of p-adic numbers by algebra.

Definition 7.7. Let Gn be a collection of groups indexed by N, and
assume that there is a homomorphism φn : Gn → Gn−1 for all n ≥ 1.
The projective limit (or inverse limit) lim←−nGn is the set of sequences

(an ∈ Gn, n ∈ N) satisfying the relations

φn(an) = an−1

for all n ≥ 1. Letting en ∈ Gn denote the identity, the group structure
is defined by

(an)(bn) = (an · bn); (an)−1 = (a−1n ); e = (en ∈ Gn).

If the Gn are rings and the φn are ring homomorphisms, then lim←−nGn

is a ring.
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That the indicated law defines a group structure follows from the
elementary properties of homomorphisms. For example, φn(a−1n ) =
φn(an)−1 = a−1n−1, for all n.

The example of interest isGn = Z/pnZ, and we write Zp = lim←−Z/pnZ,

where φn(a) is the reduction of a modulo pn−1. Suppose z ∈ Z; we can
write z in base p as

z = a0 + pa1 + p2a2 + · · ·+ pjaj

for some j, with 0 ≤ ai ≤ p−1. If j > n−1, then the image of z in Gn

is the partial sum
∑n−1

i=0 aip
i. So the elements of Zp are formally infinite

sums
∑∞

i=0 aip
i, with 0 ≤ ai ≤ p− 1, where this makes sense if we give

the set of such sequences the metric topology in which |pi| = εi for
some 0 < ε < 1. The topology doesn’t depend on the choice, but one
usually takes |pi|p = 1

pi
for all i ∈ Z; this defines a metric topology on

Q, whose completion is the field Qp of p-adic numbers, and the closure
of Z is Zp.

In Serre’s construction, the set
∏

nGn is given the product topology.
Since each Gn is finite, hence compact, the product is also compact.
The condition φn(an) = an−1 is a closed condition in the product topol-
ogy for each n, so the intersection defined by the collection of these
conditions is a closed subspace, hence is also compact. The maps φn
are all surjective. We begin by observing that, for any pair of integers
m ≥ n, there is a short exact sequence

0 → Gm−n
pn→ Gm

εn→ Gn → 0

where the map labelled pn takes an element ā ∈ Gm−n, lifts it to a ∈ Z,
and then sends it to the image of pn · a in Gm. The difference between
two lifts a, a′ is an element b = pm−nc ∈ pm−nZ, and the difference
pn · a− pn · a′ = pn · pm−nc = pm · c is sent to 0 in Gm.

Moreover, one checks directly that the diagram

0 −−−→ Gm−n
pn−−−→ Gm

εn−−−→ Gn −−−→ 0

φm−n

y φm

y =

y
0 −−−→ Gm−n−1

pn−−−→ Gm−1
εn−−−→ Gn −−−→ 0

is commutative. It follows easily that

Lemma 7.8. The sequence

0 → Zp
pn→ Zp

εn→ Gn → 0

is exact.
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Proof. First, multiplication by p, and hence by pn, is injective. Indeed,
suppose p(an) = 0; then pan = 0 for all n, hence an ∈ pn−1Gn for all
n. If an 6= 0 for some n, then φn+1(an+1) = an 6= 0, which means that
an+1 /∈ pnGn+1, contradiction.

Now the image of multiplication by pn is in Ker(εn). Conversely,
if εn((xm)) = 0, then xm ≡ 0 (mod pn) for all m ≥ n. Thus the
above short exact sequence shows that xm ≡ pnam (mod pm) for some
am ∈ Gm−n. It then follows from the commutativity of the diagram
above that φm(am) = am−1 for all m ≥ n, and so a = (am) defines an
element of Zp (we can take ai = 0 for i ≤ n) and pna = (xm). Finally,
Z ⊂ Zp by the natural map to Gn for all n, and it follows that εn is
surjective because its restriction to Z is already surjective. �

On the other hand, the topology is totally disconnected: for each n
the ideal pnZp is the inverse image of the open subset {0} ⊂ Gn with
respect to the (tautologically continuous) map εn, and the set of these
ideals forms a basis for the neighborhoods of 0 in Zp. Since each coset
of the ideal is homeomorphic to the ideal (translation by an element of
the ring is a homeomorphism of the ring) this ideal is closed as well as
open.

Proposition 7.9. The element u ∈ Zp belongs to Z×p if and only if
u /∈ pZp. If x ∈ Zp is a non-zero element, then there is a unique r ≥ 0
such that x = pr · u. In other words Zp is a discrete valuation ring.

Proof. Let I ⊂ Zp be an ideal. Let r = inf{i | εi(I) 6= {0}}. Then for
all n ≥ r, In = εn(I) 6= {0}. An element in Gn is invertible if and only
if it is not divisible by p. It follows from the lemma that I ⊂ pr−1Zp.
Let a ∈ I, εr(a) 6= 0; then there is u = (un) ∈ Zp such that pr−1u = a
and u /∈ pZp. It follows that un is invertible mod pn for all n. Let
vn = (un)−1; then φn(vn) = vn−1 and so v = (vn) is the inverse of u in
Zp. It then follows that pr−1 generates I; in other words, every ideal is
a power of (p). this implies the second statement. �

We write r = vp(x) in the situation of the proposition. We write
U = Z×p . In the next section we study the structure of this group.

8. Day 8: p-adic numbers

• (a) The structure of the p-adic unit group
• (b) Hensel’s lemma and diophantine congruences

The map x 7→ xp defines a homomorphism α : U → U . α(x) ≡ x
(mod p). Let Un ⊂ Gn be the unit group of Gn; we have Un = εn(U).
For each n there is a homomorphism αn : Un → Un. Now |Un| =
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(p− 1) · pn−1. It follows that for any un ∈ Un, u
(p−1)·pn−1

n = 1. But this
is just αnn(un)/αn−1n (un). It follows that

Lemma 8.1. For any u ∈ U and any n

αn(u) ≡ αn−1(u) (mod pn).

In particular, ω(u) = limn α
n(u) is well defined in U . Moreover ω(u) ≡

u (mod p), and ω(u)p−1 = 1.

The first part of the lemma follows from the calculation above. The
claim that ω(u) ≡ u (mod p) follows by induction from the same prop-
erty of α. Finally, ω(u)p = limn α

n+1(u) = limn α
n(u) = ω(u), which

implies that ω(u) is a p− 1st root of 1.
The image of ω is thus a subgroup of U isomorphic to Fp× under

reduction modulo p. The map ω is called the Teichmüller lift. The
kernel of ω is U1 = {u ∈ U | u ≡ 1 (mod p)}.

Now consider the formal power series

log(1 + x) =
∑
i≥1

(−1)i−1xi/i.

If p divides x then |xi/i|p ≥ i − logp(i) which tends to 0 as i tends to
infinity. Now

Proposition 8.2. An infinite series
∑

n an of p-adic numbers con-
verges in Zp if and only if limn |an|p = 0.

This follows from the (easy) ultrametric property

|x+ y|p ≤ sup(|x|p, |y|p).
It then follows formally that u 7→ log(u) : U1 → Zp is a homomorphism
and one shows easily that it is in fact an isomorphism if p > 2.

I can return to the claims of the first day.

Lemma 8.3. Let a be an integer prime to p. If p is odd, then a is a
square mod pr for all r ≥ 1 if and only if a is a square mod p. If p = 2,
then a is a square mod 2r for all r ≥ 3 if and only if a ≡ 1 (mod 8).

Proof. First assume p is odd. Write a = ω(a)u for some u ∈ U1 ⊂ Zp.
We know that a is a square mod pr if and only if ω(a)u is a square mod
pr. But if p is odd, then every element of the p-group U1/(1 + prZp) is
a square, so p is a square mod pr if and only if ω(a) is a square mod
pr, but ω(a) is determined by its image modulo p.

If p = 2, then suppose a ≡ 1 (mod 8). Let U3 be the subgroup of U
of elements congruent to 1 modulo 8. Say a = 1 + 8x3, b3 = 1 − 4x3.
Then ab23 ≡ 1 (mod 16). Suppose we have found an element br−1 such
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that ab2r−1 ≡ 1 (mod 2r), with r ≥ 3, say ab2r−1 = 1 + 2rxr. Let
br = br−1 · (1 − 2r−1xr); then ab2r ≡ 1 (mod 22r−2). As long as r >
2, the approximation is improved, and we find that (limrb

−1
r )2 = a.

(Alternatively, we could use that the log converges and is injective on
U3). �

Alternatively, we could use Newton’s method, in the following form:

Lemma 8.4. Let f ∈ Zp[X], f ′ its derivative. Let x ∈ Zp, n, k ∈ Z
with 0 ≤ 2k < n, f(x) ≡ 0 (mod pn), vp(f

′(x)) = k. Then there is y ∈
Zp such that f(y) ≡ 0 (mod pn+1), vp(f

′(y)) = k, y ≡ x (mod pn−k).

This is a version of Hensel’s Lemma

Proof. We consider y = x + pn−kz and try to satisfy these conditions
for z. By Taylor’s formula,

f(y) = f(x) + pn−kzf ′(x) + p2n−2ka

for some a ∈ Zp. Meanwhile, f(x) = pnb and f ′(x) = pkc with b ∈ Zp,
c ∈ U . Then we can find z ∈ Zp such that b + zc ≡ 0 (mod p). But
now

f(y) = pn(b+ zc) + p2n−2ka ≡ 0 (mod pn+1)

because 2n− 2k > n. When we apply Taylor’s formula to f ′ we get

f ′(y) = pkc (mod pn−k)

but n− k > k so vp(f
′(y)) = c. �

So y satisfies the same hypothesis as x but is a better approximation
to a root.

Theorem 8.5. Let f ∈ Zp[X1, . . . , Xm], x = (xi) ∈ Zmp , n, k ∈ Z, 1 ≤
j ≤ m. Suppose 0 ≤ 2k < n, f(x) ≡ 0 (mod pn), vp(∂f/∂Xj)(x)) = k.
Then f has a zero in (Zp)m congruent to x modulo pn−k.

Before I prove the theorem, here are a few corollaries. The first one
was stated the first day:

Lemma 8.6. Let f ∈ Z[X]. Let p be a prime, and suppose f̄ has no
multiple roots in F̄p. Then the congruence f(X) ≡ 0 (mod p) has a
solution if and only if for all r ≥ 1 the congruence f(X) ≡ 0 (mod pr)
has a solution.

This is the case of the theorem with m = 1, k = 0. We can then
take n = 1 and find that f has a zero in Zp, hence has a solution mod
pr for all r if it has one mod p.

Lemma 8.7. Selmer’s equation 3x3 + 4y3 = 5z3 has a solution mod pr

for all p and all r.
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Proof. Here m = 3. We take F (x, y, z) = 3x3 + 4y3 − 5z3. It has a
zero modulo p for all p, so we can at least take n = 1. Suppose p > 7;
then there is a solution with z = 1, vp(∂F/∂z)(x, y, z)) = 0. If p = 7
the solution is x = y = 1 and the partials with respect to x and y have
valuation 0. The primes 2 and 5 pose no problem using ∂F/∂x. Finally
for p = 3, we need to find a solution with n = 3, k = 1. Take x = 0,
z = 1, so the equation is 4y3 ≡ 5 (mod 27), and if we take y = 2 we
have a solution. �

Now to prove the theorem. Suppose first m = 1. Newton’s method
gives us x1 ≡ x0 = x (mod pn−k) with f(x1) ≡ 0 (mod pn+1) and no
change in v(f ′). By induction, we have a sequence x0, x1, . . . xq, . . . with
xq+1 ≡ xq (mod pn+q−k), f(xq) ≡ 0 (mod pn+q). Let y = limq xq; this
is a Cauchy sequence so the limit exists, and satisfies the requirement.

For m > 1, we leave the xi alone for i 6= j and reduce to the poly-
nomial f̃(xj) in one variable obtained by inserting the chosen xi in the
other places.

9. Day 9: Dirichlet series

(Serre, Cours d’arithmetique)

• (a) Dirichlet series
• (b) L-functions of Dirichlet characters
• (c) Factorization of the Dedekind zeta function of cyclotomic

fields
• (d) Proof that L(1, χ) 6= 0.

9.1. Basic properties of Dirichlet series.

Lemma 9.1. (Abel summation) Let (an) and (bn) be two sequences,
and define

A(m, p) =

p∑
m

ai, S(m,m′) =
m′∑
m

aibi.

Then

S(m,m′) =
m′−1∑
n=m

A(m,n)(bn − bn+1) + A(m,m′)bm′ .

Proof. Rearrangement of the sum �

Proposition 9.2. Let f : N∗ → C be an arithmetic function.

• If f(n) = O(nβ) for some β ∈ R, then

Df (s) =
∑
n≥1

f(n)

ns
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converges absolutely for Re(s) > 1 + β, uniformly on compact
subsets, and defines a holomorphic function on this region.
• Conversely, if Df (s0) converges (absolutely or not), then there

exists C > 0 such that |f(n)| ≤ CnRe(s0) for all n.
• If the closed half-plane Re(s) ≥ A is contained in the region

of absolute convergence, then Df (s) is uniformly bounded on
Re(s) ≥ A.

Proof. (1) We always write s = σ + iτ . We have

|f(n)n−s| = |f(n)|n−σ = O(n−(σ−β)).

Then by comparison with the sum
∑
n−σ we see that Df (s) is abso-

lutely convergent for σ− β > 1. Since this depends only on Re(s), the
uniformity on compact subsets follows from the same property on the
line, and it then implies holomorphy.

(2) If
∑
f(n)n−s0 converges then limn |f(n)|n−s0 = 0, which implies

the claim.
(3) For σ ≥ A,

|Df (s)| ≤
∑
|f(n)|n−σ ≤

∑
|f(n)|n−A = M

which gives a uniform bound. �

Proposition 9.3. Let f be multiplicative and of moderate growth, and
say Df (s) converges absolutely for Re(s) > σ0. Then on the half-plane
Re(s) > σ0, we have the absolutely convergent product decomposition

Df (s) =
∏
p

∑
k≥0

f(pk)p−ks.

Proof. Since
∑
f(n)n−s converges absolutely, the subseries

∑
k≥0 f(pk)p−ks

also converges absolutely.
Now for any number z ≥ 2 let N(z) ⊂ N be the set of integers all of

whose prime factors are ≤ z. Consider∏
p≤z

∑
k≥0

f(pk)p−ks =
∑
d∈N(z)

f(d)d−s.

Now if d /∈ N(z) then d > z. So

|Df (s)−
∏
p≤z

∑
k≥0

f(pk)p−ks| ≤
∑
d>z

|f(d))d−σ

and this tends to zero for Re(s) > σ0 because the series Df (s) converges
absolutely. �

Example: Euler product for ζ(s).
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Theorem 9.4 (Landau’s Lemma). Let D(s) =
∑

an
ns

be a Dirichlet
series with an ∈ R, an ≥ 0 for all n. Suppose D converges absolutely
for Re(s) > σ0 and that D extends to a holomorphic function in a
neighborhood of σ0. Then there exists ε > 0 such that D converges
absolutely for Re(s) > σ0 − ε.

In other words, if σ0 is the abcissa of convergence of D, then D has
a singularity at the point σ0.

Proof. First, this statement is invariant under translation, so we may
as well assume σ0 = 0. By hypothesis, D is holomorphic on a disk
around 1 of radius strictly greater than 1, say for |s − 1| ≤ 1 + ε for
some ε > 0. Then the Taylor series converges absolutely in this disk:

D(x) =
∞∑
i=0

(s− 1)i

i!
D(i)(1).

On the other hand, the Dirichlet series is absolutely convergent for
Re(s) > 0, uniformly on compact subsets. So its derivative can be
calculated term by term. It follows that

D(i)(s) =
∑ an(− log n)i

ns
, i ≥ 0, Re(s) > 0.

In particular

D(i)(1) =
∑ an(−logn)i

n
.

Thus for |s− 1| ≤ 1 + ε we have

D(x) =
∞∑
i=0

(s− 1)i

i!

∑
n

an(− log n)i

n
.

We set s = −ε. Then

D(−ε) =
∞∑
i=0

(−ε− 1)i

i!

∑
n

an
(− log n)i

n

=
∞∑
i=0

(1 + ε)i

i!

∑
n

an
(−1)i(− log n)i

n
=
∞∑
i=0

(1 + ε)i

i!

∑
n

an
(log n)i

n
.

But now all the terms in the sum are positive. So we can exchange the
order of the summation:

D(−ε) =
∑
n

an
n

∞∑
i=0

(1 + ε)i(log n)i

i!

=
∑
n

an
n
e(1+ε) logn =

∑
n

an
n−ε
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which implies the Dirichlet series converges absolutely for Re(s) ≥ −ε,
and this concludes the proof. �

Proposition 9.5. (a). The Riemann zeta function has a meromor-
phic continuation to Re(s) > 0 with a simple pole at s = 1, with
residue +1, and no other singularity.

(b).
∑

p
1
ps

= −log(s− 1) +O(1).

Proof. Proof of (a): We prove that

ζ(s) =
1

s− 1
+ φ(s)

where φ(s) is holomorphic for Re(s) > 0.
Note that

s

∫ n+1

n

t−s−1dt =
1

ns
− 1

(n+ 1)s
.

So

ζ(s) =
∞∑
n=1

n·s
∫ n+1

n

t−s−1dt =
∞∑
n=1

s

∫ n+1

n

btc·t−s−1dt = s

∫ ∞
1

btc·t−s−1dt.

This in turn equals

ζ(s) = s

∫ ∞
1

t−sdt+s

∫ ∞
1

(btc−t)t−s−1dt =
1

s− 1
+1+s

∫ ∞
1

(btc−t)t−s−1dt.

Now |(btc − t)| ≤ 1 so the final integral is majorized by
∫∞
1
t−s−1dt

which converges absolutely and uniformly for Re(s) > 0.
Proof of (b): See Proposition 10.1.

�

9.2. Dirichlet characters and Dirichlet L-functions.

Definition 9.6. The arithmetic function f : N∗ → C is a Dirichlet
character modulo N if f is multiplicative, f(a) depends only on the
image of a (mod N), and f(a) = 0 whenever (a,N) > 1. If there is
no proper divisor N ′|N such that f(a) depends only on the value of a
(mod N ′) for (a,N) = 1, then f is a primitive Dirichlet character.

We write L(s, χ) = Df (s) if f is a Dirichlet character χ. We only
consider Dirichlet characters χ modulo a prime p; χ is then primitive
if and only if there is a prime to p such that χ(a) 6= 1; the only
non-primitive character is χ0. The restriction of χ to (Z/pZ)× is a
homomorphism Fp× → C×.

Lemma 9.7. Euler product for L(s, χ).
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Lemma 9.8. Let χ be a Dirichlet character modulo p and let S(χ) =∑p−1
a=0 χ(a). Then S(χ) = 0 if χ 6= χ0; S(χ0) = p− 1.

Two proofs: if χ 6= χ0 then there is b such that χ(b) 6= 1; but

S(χ) =

p−1∑
a=0

χ(ab) = χ(b)S(χ)

which implies that S(χ) = 0. Alternatively, the values of χ are all dth
roots of 1 for some d > 1, d|p− 1. Let a be a cyclic generator of Fp×,
ζ = χ(a) ∈ µd assumed to be a primitive root; and then

S(χ) =
p− 1

d

d∑
c=1

ζc = Pd(ζ) = 0.

Proposition 9.9. Assume χ 6= χ0. Then L(s, χ) extends holomorphi-
cally to Re(s) > 0.

For this we use the following lemma:

Lemma 9.10. Let f be an arithmetic function. Suppose the partial
sums F (m, p) =

∑p
i=m f(i) are bounded for all m, p. Then Df con-

verges (conditionally) for Re(s) > 0 to a holomorphic function.

Proof. The proof is by Abel summation. Let (an) and (bn) be two
sequences, and define

Am,n =
n∑
m

ai, S(m,m′) =
m′∑
m

aibi.

Then

S(m,m′) =
m′−1∑
n=m

Am,n(bn − bn+1) + Am,m′bm′ .

as we see by replacing an by Am,n − Am,n−1 and regrouping. Apply
this to an = f(n), bn = n−s. Then there is a constant K such that
|Am,n| ≤ K for all m,n, and we find

|S(m,m′)(s)| = |
m′∑
n=m

f(n)n−s| ≤ K[
m′−1∑
n=m

| 1

ns
− 1

(n+ 1)s
|+ | 1

ns
|].

If s ∈ R+ then the right-hand side is just K
ms

and so |S(m,m′)(s)| tends
to 0 as m,m′ tend to infinity, uniformly in R+. Another application
of Abel summation (see below) then shows that the series converges
uniformly on compact subsets of Re(s) > 0.

�
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We have used the following Lemma:
Suppose Df (s) converges for s = s0. Then it converges uniformly in

every domain of the form Re(s− s0) ≥ 0, |Arg(s− s0)| ≤ α, provided
α < π/2.

Proof. Of course we may assume s0 = 0. The series
∑

n f(n) then
converges, which implies that for any ε there is a constant K such

that, for any m,m′ > K, |A(m,m′)| < ε with A(m,m′) =
∑m′

m f(i).
We need to prove uniform convergence in any domain of the form σ =
Re(s) ≥ 0, |s|/σ ≤ k. Now apply Abel summation, with bn = n−s as
before:

S(m,m′) =
m′−1∑
m

A(m,n)(
1

ns
− 1

(n+ 1)s
) + A(m,m′)(m′)−s;

|S(m,m′)| ≤ ε · [
m′−1∑
n=m

| 1

ns
− 1

(n+ 1)s
|+ (m′)−σ]

whenever m,m′ > K. Now there is an elementary inequality (see
below):

| 1

ns
− 1

(n+ 1)s
| ≤ |s|/σ · ( 1

nσ
− 1

(n+ 1)σ
).

Thus since |(m′)−σ| ≤ 1 and |s|/σ < k we have

|S(m,m′)| ≤ ε·[1+k
m′−1∑
n=m

(
1

nσ
− 1

(n+ 1)σ
)] = ε·[1+k(m−σ−(m′)−σ)] ≤ ε(1+k)

for m,m′ >> 0, and this implies the uniform convergence on the sector.
�

The inequality is elementary: for any real numbers 0 < α < β, with
s = σ + iτ , σ > 0, we have

|e−αs − e−βs| ≤ |s|/σ(e−ασ − e−βσ).

Indeed

e−αs − e−βs = s

∫ β

α

e−tsdt.

Thus

|e−αs − e−βs| ≤ |s|
∫ β

α

e−tσdt = |s|/σ(e−ασ − e−βσ).
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9.3. Dedekind zeta function of Q(ζp).

Definition 9.11. Let K be a number field. The Dedekind zeta function
of K is the Dirichlet series

ζK(s) =
∑
a⊂OK

N(a)−s =
∞∑
n=1

CK(n)n−s

where a runs over ideals of OK and CK(n) is the number of ideals of
norm n. ,

The semigroup of integral ideals is generated by prime ideals in O,
and so we can write the Dirichlet series formally as an Euler product:

ζK(s) =
∏
p

(1−Np−s)−1 =
∏
p

∏
p|p

(1− p−fps)−1

where fp is the residue degree. We simplify by assuming K Galois, so
this is just

∏
p(1− p−fps)−gp . The product converges absolutely if and

only if the sum of the logarithms converges absolutely. But the number
of primes dividing p is bounded by [K : Q], and for Re(s) > 1 we have
|log(1− p−fs)| ≤ |log(1− p−s)|. So the sum of logarithms is majorized
in absolute value by

[K : Q]
∑
p

log(1− p−s)

and this implies the Euler product converges absolutely whenever the
Euler product for ζ(s) converges absolutely, for Re(s) > 1. Then ar-
guing as for ζ(s), we see ζK(s) converges absolutely for Re(s) > 1.

Theorem 9.12. The Dedekind zeta function ζK(s) has a pole at s = 1.

This is true in general, but the proof requires a lengthy calculation
of Dirichlet. Here we prove it for the field Q(ζp).

Theorem 9.13. Let K = Q(ζp). Then

ζK = ζ(s) ·
∏
χ 6=χ0

L(s, χ)

where the product is over (primitive) characters modulo p.

Proof. The proof is an application of cyclotomic reciprocity. We have
to show that for each prime q 6= p,

(1− q−fqs)−gq =
∏
χ 6=χ0

(1− χ(q)q−s)−1 · (1− q−s)−1
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or equivalently, setting T = q−s

(1− T fq)gq =
∏
χ

(1− χ(q)T ).

By cyclotomic reciprocity, we know that fq is the order of q in the
group Fp×. Let X(Fp×) = Hom(Fp×,C×). Since Fp× is cyclic of order
p − 1, choosing a cyclic generator α identifies X(Fp×) with the group
µp−1 of (p−1)st roots of 1 in C× by sending χ to χ(α). Thus |X(Fp×)| =
|Fp×|. For any subgroup H ⊂ Fp×, let H⊥ = {χ ∈ X(Fp×) | χ|H = 1}.
Since H is cyclic, one sees easily that |H| · |H⊥| = p−1. It follows that
there is a short exact sequence

1 → H⊥ → X(Fp×) → X(H) = Hom(H,C×) → 1.

We apply this to the subgroup 〈q〉 ⊂ Fp×, of order fq, generated
by the residue of q. The set X(H) is then identified with the set of
possible fq-th roots of 1, by χ 7→ χ(q). In other words,∏

χ 6=χ0

(1− χ(q)T ) =
∏
ζfq=1

(1− ζfqT )|H
⊥|,

each value counted |H⊥| = [Fp× : H] = gq times. But
∏

ζfq=1(1 −
ζfqT ) = (1 − T fq). So this completes the proof for q 6= p. For q = p,
we have seen that there is exactly one p dividing p, of norm p, and on
the other hand for χ 6= χ0 one has χ(p) = 0. So the two sides match
for p as well. �

Theorem 9.14. (i) Let χ 6= χ0; then L(1, χ) 6= 0. (ii) Let K = Q(ζp).
Then the Dedekind zeta function ζK(s) has a pole at s = 1.

Proof: Follow Serre, Cours d’arithmétique. Since ζK(s) = ζ(s) ×∏
χ 6=χ0

L(s, χ), (ii) is a consequence of (i) and of the existence of a

pole of ζ(s). So we prove (i). There are many proofs, and we use one
specific to this situation. Recall that ζ(s) = 1

s−1 + φ(s) where φ(s) is
holomorphic for Re(s) > 0. Thus if L(1, χ) = 0 for one χ then ζK would
be holomorphic up to Re(s) > 0. On the other hand, ζK is a Dirichlet
series with positive coefficients. By Landau’s lemma, it suffices to show
that its region of absolute convergence is for Re(s) > σ0 with σ0 strictly
greater than 0, in order to derive a contradiction.

Now for q 6= p, the q factor of ζK is

1

(1− q−fqs)gq
= (1 + q−fqs + p−2fqs + . . . )gq
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which (for s real) dominates the series

1 + q−fqgqs + q−2fqgqs + · · · =
∞∑
i=1

q−i(p−1)s.

It follows that the n-th coefficient of ζK is greater than or equal to the
n-th coefficient of ∑

(p,n)=1

1

n(p−1)s

which diverges for s = 1
p−1 . Thus ζK has a pole on Re(s) > 0, and thus

all the L(1, χ) 6= 0.

10. Day 10: Dirichlet’s theorem on primes in an
arithmetic progression

• (a) Dirichlet density
• (b) Primes in an arithmetic progression

First, some unfinished business with ζ(s).

Proposition 10.1. The series
∑

p p
−s, where p runs over all rational

primes, is asympotic to log( 1
s−1) when s → 1. For k an integer, k ≥ 2,

the series
∑

p

∑
k≥2 p

−ks is bounded when s → 1.

Proof. The variable s is real and greater than 1. We consider

log(ζ(s)) =
∑
p

log(1− p−s) =
∑
p

∑
k≥1

1

kpks
=
∑
p

p−s +
∑
p

∑
k≥2

1

kpks
.

Now the second sum is majorized by
∑

p

∑
k≥2 p

−ks which is the sum
of the geometric series∑

p

1

ps(ps − 1)
≤
∑
p

1

p(p− 1)
≤
∑
n

1

n(n− 1)
= 1.

So the second term is bounded in a neighborhood of 1, and so
∑

p p
−s is

asymptotic to log(ζ(s) which is asymptotic to log( 1
s−1) when s → 1. �

This justifies the following definition.

Definition 10.2. Let A be a subset of the set P of prime numbers.
The Dirichlet density of A, if it exists, is the number k such that

lim
s → 1

∑
p∈A p

−s

log( 1
s−1)

= k.

In particular, the set of all prime numbers has density 1, a finite set
has density 0, and k is necessarily in [0, 1] if it exists.
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Theorem 10.3. (Dirichlet’s theorem). Let a and m be relatively prime
integers, m > 0. Let Pa be the set of primes q such that q ≡ a (mod m).
Then Pa has density 1

ϕ(m)
.

We will prove this for m = p prime. The proof in general is the same
but requires the factorization of the Dedekind zeta function of the zeta
function of the field of mth roots of 1. In particular, note that Pa is an
infinite set!

The proof uses the results on Dirichlet L-functions proved in the
previous session. For χ a Dirichlet character mod p, let

fχ(s) =
∑
q 6=p

χ(q)

qs
.

This series converges absolutely for Re(s) > 1.

Lemma 10.4. If χ = χ0, then fχ is asympotic to log( 1
s−1) when s → 1.

If χ 6= χ0, then fχ is bounded when s → 1.

Proof. For χ = χ0, fχ is just the sum studied before, with the term
q = p removed, so the first statement is clear. For the second term, we
consider logL(s, χ) in a neighborhood of s = 1. This is well-defined
since each χ(q)q−s is of absolute value < 1 as∑

q

log(
1

1− χ(q)q−s
) =

∑
q

∑
k≥1

χ(q)k

ksk
.

As before, we have

logL(s, χ) = fχ(s) +
∑
q

∑
k≥2

χ(q)k

kqsk
.

But since |χ(q)| = 1, the second term is bounded in a neighborhood of
1, by our previous calculation. Thus fχs is asymptotic to logL(s, χ)
as s → 1, and since L(s, χ) is holomorphic in a neighborhood of s = 1
and doesn’t vanish at s = 1, this is finite.

�

This is the main application of the result L(1, χ) 6= 0. We can now
prove Dirichlet’s theorem. Let a be an integer prime to p, or a residue
class modulo p. Define

ga(s) =
∑
q∈Pa

1

qs
.

Lemma 10.5. ga(s) = 1
[K:Q]

∑
χ χ(a)−1fχ(s).
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Proof. This is a simple consequence of the orthogonality relations: if a
is an integer, then

T (a) =
∑
χ

χ(a) = 0 a 6= 1 (mod p);

∑
χ

χ(a) = p− 1 = [K : Q] a = 1 (mod p).

This is proved by a familiar argument: if a 6= 1 then there is a Dirichlet
character χ′ with χ′(a) 6= 1. Indeed, if a = αb for a cyclic generator

α of Fp×, with b < p − 1, we can define χ′ by χ′(α) = e
2πi
p−1 ; then

χ′(a) = e
2πib
p−1 6= 1. Now

T (a)
∑
χ

χ(a) =
∑
χ

χ′(a)χ(a) = χ′(a)T (a)

and we conclude as before.
Now consider the right-hand side of the lemma:∑

χ

χ(a)−1fχ(s) =
∑
χ

∑
q 6=p

χ(a)−1χ(q)

qs
=
∑
q 6=p

[
∑
χ

χ(a)−1χ(q)]
1

qs
=
∑
q 6=p

T (a−1q)
1

qs
.

By the orthogonality relation, this is∑
q∈Pa

[K : Q]

qs
.

�

Now we complete the proof. This lemma states that ga(s) is asymp-
totic to 1

[K:Q]

∑
χ χ(a)−1fχ(s) when s → 1. But the fχ are bounded for

χ 6= χ0, and fχ0 is asymptotic to log( 1
s−1). So ga(s) is asymptotic to

1
[K:Q]

log( 1
s−1) when s → 1, which is exactly the statement that Pa has

density 1
p−1 .

11. Day 11: Newman’s proof

• (a) Newman’s proof of the prime number theorem
• (b) Non vanishing along the line Re(s) = 1.
• (c) Newman’s analytic theorem

For any real number x, denote by π(x) the number of primes less
than x, or equivalently

π(x) =
∑
p≤x

1.

Theorem 11.1. (Prime Number Theorem) π(x) ∼ x
log(x)

.
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The theorem was conjectured by Gauss and was proved by Hadamard
and de la Vallée Poussin in the 1890s. Introduce the notation

θ(x) =
∑
p≤x

log(p)

where p runs through prime numbers.

Proposition 11.2. The Prime Number Theorem is equivalent to the
assertion

θ(x) ∼ x.

This proposition follows from Abel summation and we will prove it
in the next section. Meanwhile, here is another statement:

Theorem 11.3. The integral∫ ∞
1

(θ(t)− t)t−2dt

is convergent.

Here is the proof that this convergence implies θ(x) ∼ x. Suppose
lim sup θ(x)/x > 1. Thus there exists ε > 0 and a sequence of xn
tending to∞ such that θ(xn)/xn ≥ 1+ε. Consider t ∈ [xn, (1+ε/2)xn].
For such t we have (since θ is increasing)

(θ(t)− t)t−2 ≥ (θ(xn)− (1 + ε/2)xn)/t2 ≥ εxn/2

t2
≥ ε

2((1 + ε/2)2xn
.

Thus∫ (1+ε/2)xn

xn

(θ(t)− t)t−2dt ≥ [ε/2xn]
ε

2((1 + ε/2)2xn
≥ ε2

4(1 + ε/2)2

which is a constant independent of n; so the integral diverges. If
lim inf θ(x)/x < 1 then there exists ε > 0 and a sequence of xn tending
to ∞ such that θ(xn)/xn ≤ 1− ε. On the interval [(1− ε/2)xn, xn] we
then have

(θ(t)− t)t−2 ≤ (θ(xn)− (1− ε/2)xn)/t2 ≤ −εxn/2
t2

and in the same way we find an infinite sum of negative terms. So it
follows that θ(x) ∼ x.

We use Newman’s theorem from complex analysis. First note that
if h(t) is a bounded, piecewise continuous function, then the integral

F (s) =

∫ ∞
0

h(u)e−sudu
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is convergent and defines a holomorphic function on the half-plane
Re(s) > 0. (For this we can replace h by 1 and then the result follows
by simple integration.

Theorem 11.4. Let h(t) be a bounded, piecewise continuous function.
Suppose the holomorphic function

F (s) =

∫ ∞
0

h(u)e−sudu

on the half-plane Re(s) > 0 can be analytically continued to Re(s) ≥ 0.
Then the integral converges for s = 0 and

F (0) =

∫ ∞
0

h(u)du

The proof is not obvious but uses only classic complex analysis (the
residue theorem). We prove it after deriving the convergence of the
integral. We apply it to the function

F (s) =

∫ ∞
1

(θ(t)− t)t−s−2dt =

∫ ∞
0

θ(eu)− eu

eu(s+2)
eudu

=

∫ ∞
0

[θ(eu)e−u − 1]e−sudu

We want to apply the analytic theorem to h(u) = θ(eu)e−u − 1. It
is piecewise continuous because θ(x) is. It is also bounded. Indeed, I
claim

Lemma 11.5.
θ(x) ≤ (2log(4))x.

Here is the (elementary) argument.(
2n
n

)
≤

2n∑
k=0

(
2n
k

)
= (1 + 1)2n = 4n.

Hence

nlog(4) ≥ log

(
2n
n

)
≥

∑
n<p≤2n

log(p) = θ(2n)− θ(n),

where the first inequality follows from the previous one, the second one
comes from the factorization of the binomial coefficient, and the final
equality is the definition. Applying this when n = 2m we find

θ(2m) =
m−1∑
k=0

θ(2k+1)− θ(2k) ≤
n−1∑
k=0

2klog(4) = (2m − 1)log(4).
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So if 2m ≤ x < 2m+1 we have

θ(x) ≤ θ(2m+1) ≤ (2m+1)log(4) ≤ 2log(4)x.

So it remains to show that F (s) can be analytically continued to
a holomorphic function to the closed half-plane in order to show that
θ(x) ∼ x. Rewrite F (s) for Re(s) > 0 as

F (s) =

∫ ∞
1

(θ(t)− t)t−s−2dt =
∞∑
n=1

∫ n+1

n

θ(t)t−s−2dt−
∫ ∞
1

t−s−1dt

=
∞∑
n=1

θ(n)
n−s−1 − (n+ 1)−s−1

s+ 1
− 1

s

=
1

s+ 1

∞∑
n=1

n−s−1[θ(n)− θ(n− 1)]− 1

s

and since θ(n) − θ(n − 1) = 0 if n is not prime and equals log(p) if
n = p is prime, this is

1

s+ 1

∑
p

p−s−1log(p)− 1

s
=

1

s+ 1
D(s+ 1)− 1

s
,

where D(s) =
∑

p p
−slog(p)

On the other hand, for Re(s) > 1, −ζ ′(s)/ζ(s) can be written

− d

ds
log(ζ(s)) =

∑
p

d

ds
log(1− p−s) =

∑
p

log(p)p−s
∑
m≥0

p−ms

=
∑
p,m≥1

log(p)p−ms =
∑
p

log(p)p−s +
∑
p,m≥2

p−ms.

We have seen that the second term is absolutely convergent and holo-
morphic for Re(s) > 1

2
, so

D(s) = −ζ ′(s)/ζ(s) + r(s)

where r(s) is holomorphic for Re(s) > 1
2
. Thus F (s) = 1

s+1
D(s+ 1)−

1
s

= − ζ′(s+1)
(s+1)ζ(s+1)

− 1
s

+ r(s+ 1) where h(s) = r(s+ 1) is holomorphic for

Re(s) > −1
2
. We need to show that the pole at s = 0 of −1

s
is precisely

compensated by a pole of − ζ′(s+1)
(s+1)ζ(s+1)

. The key theorem is then

Theorem 11.6. (Hadamard, de la Vallée-Poussin), The function ζ(s)
has no zeroes on the line Re(s) = 1.

Proof. This is based on a simple inequality:

4cos(x) + cos(2x) + 3 = 2(1 + cos(x)2) ≥ 0.
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Now using the Taylor series for log(1− p−s) for Re(s) > 1,

log(ζ(σ + iτ)) =
∑
p,m

p−m(σ+iτ)/m

and so its real part is

log |ζ(σ + iτ)| =
∑
p,m

p−mσcos(mτ log p)).

Apply this to the product ζ(σ + iτ)4ζ(σ + i2τ)ζ(σ)3:

log |ζ(σ+iτ)4ζ(σ+i2τ)ζ(σ)3| =
∑
p,m

p−mσ[4cos(mτ log(p))+cos(2mτ log(p))+3] ≥ 0

by the simple inequality.
Now if σ > 1, this implies that

|ζ(σ + iτ)4ζ(σ + i2τ)ζ(σ)3| ≥ 1.

Suppose ζ(s) had a zero of order k at 1 + iτ and order ` at 1 + 2iτ .
Then (as σ → 1+)

|ζ(σ + iτ)|4 ∼ a(σ − 1)k; |ζ(σ + 2iτ)| ∼ b(σ − 1)`; |ζ(σ)| ∼ (σ − 1)−1.

Thus |ζ(σ + iτ)4ζ(σ + i2τ)ζ(σ)3| ∼ c(σ − 1)4k+`−3; but since we know
it is ≥ 1 for σ > 1 it follows that 4k + `− 3 ≤ 0 which is impossible if
k > 0. �

Corollary 11.7. The function G(s) = F (s− 1)− r(s) = − ζ′(s)
(s)ζ(s)

− 1
s−1

on Re(s) > 1 extends holomorphically to Re(s) ≥ 1.

This completes the proof that θ(x) ∼ x, assuming Newman’s analytic
theorem, and thus the Prime Number Theorem, assuming the relation
between θ(x) and π(x).

Proof. The previous theorem shows that ζ ′/ζ is holomorphic on the
line Re(s) = 1 except at s = 1 where ζ has a pole. So it remains
to understand G(s) in a neighborhood of s = 1. Now ζ(s) has a
simple pole at s = 1, ζ(s) = 1

s−1f(s), where f is holomorphic and
non-vanishing near s = 1. Thus

ζ ′(s)/ζ(s) = f ′/f − dlog(s− 1) = f ′/f − 1/(s− 1) = −1/(s− 1) + g(s)

where g is holomorphic in a neighborhood of 1. Thus G(s) = −g(s) in
a neighborhood of s = 1 and we are done. �
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Proof of the analytic theorem. For any T >> 0 let FT (s) =∫ T
0
h(t)e−stdt. Since h is bounded, say |h(t)| ≤ M , and piecewise con-

tinuous, this is a (finite) sum of entire functions. We need to show

• limT → ∞ FT (0) exists
• limT → ∞ FT (0) = F (0).

Consider for R >> 0 the contour γ = γ(R, δ) which bounds the region

S = {s ∈ C | Re(z) > −δ, |s| < R}.

The hypothesis that F extends holomorphically to Re(s) ≥ 0 implies
that, for fixed R, there exists δ > 0 such that F (s) is analytic on (the
closure of) S.

Now let

GT (s) = (F (s)− FT (s))esT (1 + s2/R2).

Then GT (0) = F (0)− FT (0). It therefore suffices to prove

• limT → ∞GT (0) exists
• limT → ∞GT (0) = 0.

We use the residue theorem:

GT (0) = F (0)−FT (0) =
1

2πi

∫
γ

GT (s)
ds

s
=

1

2πi

∫
γ

(F (s)−FT (s))esT (1+s2/R2)
ds

s
.

Write γ = γ1 ∪ γ2 where γ1 ⊂ {Re(s) > 0} and γ2 ⊂ {Re(s) < 0}.
The integral over γ1 is for |s| = R, i.e. s = Reiθ. Then

|esT (1 + s2/R2)
1

s
| = eRe(s)T |Re

−iθ

R2
+
Reiθ

R2
| = eRe(s)T

2Re(s)

R2
.

Moreover

|F (s)− FT (s)| = |
∫ ∞
T

h(t)e−stdt| ≤M

∫ ∞
T

e−Re(s)tdt =
Me−Re(s)T

Re(s)
.

So the integral over γ1 is bounded: since the length of γ1 is πR we find

| 1

2πi

∫
γ1

(F (s)−FT (s))esT (1+s2/R2)
ds

s
| ≤ Me−Re(s)T

2πRe(s)
·eRe(s)T 2Re(s)

R2
·(πR) ≤ M

R
.

So as R → ∞, this part of the integral is arbitrarily small.
Now we bound the integral over γ2. Write

1

2πi

∫
γ2

GT (s)
ds

s
= I1 − I2

where

I1 = I1(T ) =
1

2πi

∫
γ2

F (s)esT (1+s2/R2)
ds

s
, I2 =

1

2πi

∫
γ2

FT (s)esT (1+s2/R2)
ds

s
.
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First note that FT (s) is entire, so we can use the Cauchy integral
theorem to replace the contour γ2 by the arc of the circle of radius R
in Re(s) < 0. There is the bound

|FT (s)| = |
∫ T

0

h(t)e−stdt| ≤M

∫ T

0

e−Re(s)tdt =
M [1− e−Re(s)T ]

Re(s)
.

Thus

|I2| ≤
1

2π
(πRM) · M |1− e

−Re(s)T |
Re(s)

eRe(s)T
2Re(s)

R2
=
M

R
· |eRe(s)T − 1|

but the term |eRe(s)T−1| is≤ 1 on Re(s) < 0. So |I2| ≤ M
R

is negligeable
when R → ∞. As for I1, let K be a compact subset K ⊂ {Re(s) < 0}
where F is holomorphic, and say |F (s)| ≤ MK is bounded on K. Say

K ⊂ {Re(s) ≤ −η}. Then for Re(s) ∈ K, limT → ∞ |F (s)esT (1+ s2

R2 )1
s
|

is dominated by e−ηT which tends uniformly to 0. Thus

lim
T → ∞

I1(T ) = 0.

It follows that

|F (0)− FT (0)| ≤ 2M

R
+ ε(T )

for some T that tends to 0 (depending on R). This suffices to show
that limFT (0) = F (0).

12. Day 12: Odds and ends

12.1. The function θ. Here are some elementary considerations about
the function θ.

θ(x) =
∑
p≤x

log p ≤ log(x)
∑
p≤x

1 = log(x)π(x),

so
θ(x)

log x
≤ π(x).

On the other hand, if 2 ≤ y < x,

π(x)− π(y) =
∑
y<p≤x

1 ≤ 1

log y

∑
y<p≤x

log p =
1

log y
[θ(x)− θ(y)].

Thus

π(x) ≤ θ(x)

log y
+ π(y) ≤ θ(x)

log y
+ y.
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Choose y = x
(log x)2

. Then

θ(x)

log x
≤ π(x) ≤ θ(x)

log x− 2 log log x
+

x

(log x)2
.

Thus since we know that θ(x) ∼ x we have

θ(x)

log x
∼ x

log x
;

θ(x)

log x− 2 log log x
+

x

(log x)2
∼ x

log x− 2 log log x
+

x

(log x)2
∼ x

log x
.

which together imply

π(x) ∼ x

log x
.
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12.2. Finiteness of the class number. This is an argument in ge-
ometry of numbers.

Note first that

Theorem 12.1. Let K be a number field. Let S = σ1, . . . , σr1 be the
set of distinct real embeddings, T = τ1, . . . , τr2 (half) the set of distinct
complex embeddings of K, so that τi 6= τ̄j for all i, j. Thus |S| = r1,
|T | = r2, and r1 + 2r2 = n = [K : Q]. We embed OK in Rr1 × Cr2 by

Φ : x 7→ (σ1(x), . . . , σr1(x), τ1(x), . . . , τr2(x)).

Then the image of OK is discrete in the n-dimensional real vector space
V = Rr1 × Cr2.

Proof. Let K(t) ⊂ Rr1 ×Cr2 be the (euclidean) set defined by |xi| ≤ t,
|zj| ≤ t for i = 1, . . . , r1, j = 1, . . . , r2. We show that OK ∩ K(t) is
finite. Indeed, every element x ∈ OK ∩ K(t) has the property that
|σi(x)|, |τj(x)| ≤ t. This means the coefficients of its minimal polyno-
mial are all bounded in terms of t, but the coefficients are integers, so
(as we have already seen) this means they all belong to a finite set. �

It follows that OK ⊂ V is a lattice, in other words OK contains
an R-basis of V . The parallelipiped defined by such a basis is thus
a fundamental domain for OK ⊂ V ; we let vK denote its volume,
which is | det(e1, . . . , en)| where {e1, . . . , en} is a basis for the lattice
(it’s actually the square root of the absolute value of the discriminant).

We need to prove the following fact.

Proposition 12.2. Let Γ ⊂ Rn be a discrete subgroup. Then Γ has a
basis over Z formed of r linearly independent vectors over R, for some
r ≤ n, with equality if and only if Γ has a compact fundamental domain
in Rn.

Proof. Let e1, . . . , er ⊂ Γ be a maximal set of R-linearly independent
elements. If we show that the subgroup Λ generated by the ei is of
finite index in Γ then we know that the rank of Γ is r, which is less
than or equal to dimRn = n.

In any case, every element of Γ is a linear combination, with R-
coefficients, of the ei. Say y ∈ Γ, y =

∑r
i=1 xiei for some xi ∈ R.

We want to show there is a finite set of possibilities for y modulo Λ.
Subtracting an element of Λ we may assume

y ∈ C := {
r∑
i=1

aiei, 0 ≤ ai ≤ 1}.

Now C is compact, and a discrete subset of a compact space C is closed
(because it is equal to all its limit points) and therefore compact; but
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it can be covered by a collection of open sets with one member in each
set, and this has a finite subcover, so the set is itself finite. This implies
that Γ/Λ is finite, and completes the proof. Obviously if r < n we can
find an independent er+1 and then the fundamental domain will have to
include all multiples of er+1, hence is not compact. On the other hand,
if r = n we have seen that the fundamental domain is compact. �

Theorem 12.3. (Minkowski) Let Ω ⊂ Rn be a compact, convex, and
symmetric set (symmetric means that if x ∈ Ω then −x ∈ Ω). Let
Λ ⊂ V be a lattice. Assume vol(Ω) > 2n| det(Λ)|. Then Ω ∩ Λ has a
non-zero element.

Proof. Suppose Λ = A(Zn) for some matrix A, so that | det(Λ)| =
| det(A)|. The image of Ω under A−1 is again compact, convex, and
symmetric; so we may as well assume Λ = Zn. Let C = [0, 1[n. Let
T ⊂ Rn and suppose (T + λ) ∩ (T + µ) = ∅ for λ 6= µ ∈ Zn. Now

T = ∪λ∈Zn(T ∩ (C + λ))

(disjoint union). So

vol(T ) =
∑
λ∈Zn

vol(T ∩ (C + λ)) =
∑
λ∈Zn

vol((T − λ) ∩ C);

but by the hypothesis on T , this is the volume of a disjoint union
contained in C. So

vol((∪λ∈Znvol((T − λ) ∩ C) ≤ vol(C) = 1.

Thus if vol(T ) > 1 there exists x ∈ T ∩ (T + λ) with 0 6= λ ∈ Zn and
we have x = t1 = t2 + λ so λ = t1 − t2 ∈ T − T .

Now we let T = 1/2Ω = {x
2
, x ∈ Ω}. So K = T − T and vol(T ) =

2−nvol(Ω) > 1 by hypothesis. Then we have seen that Ω∩Zn − {0} 6=
∅. �

Lemma 12.4. There exists c1 = c1(K) > 0 such that, if I ⊂ O is a
non-zero ideal, then there is a non-zero α ∈ I such that |NK/Q(α)| ≤
c1N(I).

Proof. Let Ωt ⊂ V be the compact, convex, symmetric subset de-
fined above, a product of r1 intervals and r2 circular disks, of vol-
ume 2r1πr2tn. The lattice Φ(I) ⊂ V has volume vKN(I). Thus, if
2r1πr2tn > 2nvKN(I) we have Φ(I) ∩ Ωt 6= {0}. We take any t satisfy-
ing this inequality (actually we can take t defined by the equality using
compactness); there is 0 6= α ∈ I with Φ(α) ∈ Ωt, so |NK/Q(α)| ≤ tn ≤
c1N(I) where c1 is any constant larger than (4/π)r2vK . �

Theorem 12.5. The set of ideal classes of OK is finite.
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Proof. Let c1 be as above and let m = [c1]!. For I as in the lemma, let
0 6= α ∈ I as in the lemma; so |I/(α)| ≤ c1. It follows that mI ⊂ αOK .
Let J = m

α
I. Then J ⊂ OK and J and I are in the same ideal class;

indeed αJ = mI. Moreover, α ∈ I, so mα ∈ αJ which means that
m ∈ J . So any ideal is equivalent to one that contains m. But the set
of ideals containing m is finite. �

We can do better than that. Let c1 be the constant in the Lemma.

Corollary 12.6. Every ideal class in OK contains an element of norm
< c1.

Proof. Let κ be an ideal class, and let I be an ideal in the inverse
class. The lemma states that there is a non-zero α ∈ I such that
|NK/Q(α)| ≤ c1N(I). Now (α) ⊂ I implies that there is an ideal
J ⊂ O such that (α) = IJ ; in other words, J is in the class κ and is
integral. But now N(IJ) = NK/Q(α) < c1N(I), thus N(J) < c1. �

Recall that c1 = (4/π)r2vK , where vK is the volume of the lattice
Φ(OK) ⊂ Rr1 × Cr2 . If (α1, . . . , αn) is a Z-basis of OK , this volume is
| det(A)| where A is the real matrix with rows (or columns)

(σ1(αj) . . . σr1(αj)Re(τ1(αj))Im(τ1(αj)) . . . Re(τr2(αj))Im(τr(αj))

for j = 1, . . . , n. If we consider instead the complex matrix C where
the σ’s are unchanged but the Re(τi) and Im(τi) are replaced by τi, τ̄i
(complex conjugate), this corresponds to multiplication of A by a block

matrix

(
Ir1 0
0 B

)
where B consists of diagonal 2×2 blocks all of which

are given by

(
1 i
1 −i

)
. So | det(C)| = | det(B)|| det(A)| = | − 2i|r2vK ;

vK = 2−r2 | det(C)|.
However, if we let (si) = (σi, τj, τ̄j) be uniform notation, then | det(C)| =√
|(det(si(αj)))2| =

√
|∆K | where ∆K is the discriminant of OK . In-

deed,

Lemma 12.7. Let L ⊂ K be any lattice, and define

∆L = (det(si(αj)))
2.

Then
(i) ∆L ∈ Q×;
(ii) If L ⊂ OK, then ∆L ∈ Z.
(iii) If L′ ⊂ L, then |∆L′ | = [L : L′]2|∆L|.

We admit the lemma for the moment, and write ∆K instead of ∆OK .
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Corollary 12.8. Every ideal class in OK contains an integral ideal of
norm at most (2/π)r2

√
|∆K |.

There is a better bound due to Minkowski:

Corollary 12.9. Every ideal class in OK contains an integral ideal of
norm at most (4π)r2 n!

nn

√
|∆K |.

This involves paying closer attention to the calculation above, but the
one we have defined will suffice. However, since no ideal has norm less
than 1, Minkowski’s bound implies in particular that (4π)r2 n!

nn

√
|∆K | ≥

1, in other words that
√
|∆K | ≥ (π/4)r2 · nn

n!
> 1 (the other bound is

> 1 provided r2 > 0).
Now we prove the lemma about ∆L. First, we let K ′ ⊃ K be a

Galois extension of Q containing K and contained in C, so that K ′

contains the images of all complex embeddings of K. We check that
∆L is invariant under Gal(K ′/Q). If σ ∈ Gal(K ′/Q), then the n-tuple
(σ ◦ si) is a permutation of (si). (If σ ◦ si = σ ◦ sj then si = sj.)
So σ permutes the rows (or columns) of the matrix C and therefore
multiplies its determinant by ±1; but it multiplies the square of the
determinant by 1. This proves (i). If L ⊂ OK , then ∆L ∈ Q∩OK = Z.
Finally, the (absolute value of) the determinant of a basis of a sublattice
is the index of the sublattice multiplied by the covolume of the lattice,
and the index is squared in the square of the determinant. (We should
work with Rn and replace the τi by their real and imaginary parts, but
this just amounts to multiplying by 2−r2 again.)

If K = Q(
√
d) then ∆K is given by the square of the determinant of

the matrix

(
1 1√
d −

√
d

)
if d ≡ 2, 3 (mod 4)

(
1 1

1+
√
d

2
1−
√
d

2

)
if d ≡ 1

(mod 4). Thus ∆K = 4d or ∆K = d in the two cases. Note that the
divisors of ∆K are exactly the primes that ramify in K!

We note the following addendum to quadratic reciprocity.

Lemma 12.10. The prime 2 is ramified in Q(
√
d) if d ≡ 2, 3 (mod 4),

it is split if d ≡ 1 (mod 8), and stays prime if d ≡ 5 (mod 8).

Proof. Consider the ring OK/(2) = F2[X]/(f), f(X) = X2 −X − d−1
4

.
We need to know when f has a root in F2. Obviously it has no double
root, so this is only possible if f(0) = 0 (mod 2), i.e. if and only if
d−1
4
≡ 0 (mod 2). �

Examples. Let K = Q(
√
−19). Then |∆K | = 19, and every ideal

class contains an ideal of norm < 2
√

19/3 = 2.906 · · · < 3. Now 2 stays
prime in OK by the lemma, so any prime dividing 2 has norm 4, and
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so any ideal has norm at least 3. Thus Q(
√
−19) has class number 1

and its ring of integers is principal.

13. The discriminant

It follows from Lemma 12.7 and Proposition 12.2 that

Corollary 13.1. Let K be a number field of degree n and let R ⊂ OK
be a subring of rank n over Z. Suppose |∆R| = |∆K |. Then R = OK.
Moreover, if ∆R is square-free then R = OK.

Proof. Let d = [OK : R]. Then we have seen that |∆R| = d2|∆K |,
which implies the corollary. �

We can use the discriminant to determine the ring OK even when the
corollary does not apply directly. First we note that the discriminant
can be defined when the inclusion Z ⊂ O is replaced by ZS ⊂ OS for
any multiplicative subset S ⊂ Z. So if p is a prime, we can consider
Z(p) ⊂ O(p). Since O(p) has only finitely many prime ideals, it is a PID.
Notation is self-explanatory.

Lemma 13.2. The ideal ∆O(p)/Z(p)
is the localization at p of ∆K.

Proof. If {α1, . . . , αn} is a Z-basis for O it is also a Z(p) basis for O(p).
So the assertion is clear. �

The prime decomposition of p in O can be determined after local-
ization at p: if pO =

∏
i p

ei
i then

pO(p) =
∏
i

(piO(p))
ei =

∏
i

(pi,(p))
ei

(the second is alternative notation).

Lemma 13.3. Let α ∈ O be an element of degree n over Q and let p
be a prime such that Z[α](p) = O(p). Then p ramifies in K if and only
if p divides ∆K. (See Hindry, Exercise 6.14, p. 119)

Proof. We have seen that p ramifies in K if and only if pO(p) is divisible
by a prime of O(p) with multiplicity greater than 1. This is true if and
only if O(p)/(p) = Z(p)[α]/(p) has nilpotents, as we have already seen;
and this is true if and only if the minimal polynomial f of α has a
multiple root mod p. But this holds if and only if f and f ′ have a
common root, say α′, mod p. More precisely, we have∏
i

O(p)/(pi,(p))
ei = O(p)/(p) = Z(p)[α]/(p) = Fp[X]/(f) =

∏
i

Fp[X]/((φi)
ei)

and we can match pi,(p) with the polynomial φi. Say φ = φi for some i
with ramification index e = ei > 1. In the Galois closure K+ of K, f
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has a root β that reduces mod p to a root of φ, and there is an element
s ∈ Gal(K+/Q) such that s(α′) = β, and f ′(β) is divisible by a prime
of s(O(p)) = Z(p)[β] dividing p. Thus p ramifies in K if and only if

Ns(K)/Q(f ′(β)) = NK/Q(f ′(α)) ∈ pZ(p).

which is true if and only if p divides (NK/Q(f ′(α))) = (∆O(p)/Z(p)
) (by

Exercise 6.13 in Hindry’s book, p. 119). �

Now for any α ∈ O of degree n, [O : Z[α]] = N is finite, so for any
prime not dividing n, Z[α](p) = O(p). In this way we see that the set of
ramified primes is finite.

Examples. 1. Let p be a prime, r ≥ 1, and consider ζpr = e2πi/p
r
,

a primitive pr-th root of 1. Let K = Q(ζpr), the cyclotomic field of
degree φ(pr) over Q. Let R = Z[ζpr ]. We have seen in the homework
that

∆R = (pp
r−1(pr−r−1))

is divisible by no prime other than p. Since there is an integer d such
that ∆R = d2∆K , it follows that p is the only prime that ramifies in
K.

2. On the other hand, suppose [K : Q] = n, p is a prime, and α ∈ OK
is an element such that (αn) = pOK as ideals. Then p is ramified in K,
and indeed (α) is a prime ideal. The proof is obvious: let (α) =

∏
i p

ei
i

be the prime factorization of the principal ideal (α). Then

(pOK) =

g∏
i=1

pneii

and if fi is the residue degree of pi we have∑
neifi = n;

g∑
i=1

eifi = 1

which means that g = 1 and e1 = f1 = 1, (α) = p1. For example,
suppose K = Q( 5

√
3). Take p = 3, α = 5

√
3. Then n = 5 and (α5) =

(3), so 3 is ramified in K and (α) is a prime ideal. Moreover, letting
f = X5 − 3 be the minimal polynomial of α, we see that

NK/Q(f ′(α)) = 55 ·
4∏
i=0

(ζ i5)(α)4 = 55 · 34.

Thus if R = Z[α], ∆R = ±55 · 34 and the only primes that can ramify
in K are 3 and 5. We have seen that 3 ramifies, and 5 has to divide
∆K because ∆K/∆R is a square. We have not yet shown that every
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prime that divides ∆K necessarily ramifies. For this we would have to
determine the localization of O at 5.

Integers in a cyclotomic field. We consider the field K = Q(ζpr)
for r ≥ 1. Write ζ = ζpr (any primitive root of Φpr(X). We show that
[K : Q] = φ(pr). In any case, it is generated by a root of a polynomial
of degree φ(pr), so the degree n is at most φ(pr).

Proposition 13.4. Let ζ ′ be another primitive prth root of 1. Then
1−ζ
1−ζ′ is a unit in OK.

Proof. It’s the same as for the case r = 1. �

It follows that ∏
ζ′

(1− ζ ′) = u(1− ζ)φ(p
r)

for some unit u But the left-hand side is Φpr(1) = p. So (p)OK =
(1 − ζ)φ(p

r). It follows that (1 − ζ) is a prime ideal, say p, and that p
is totally ramified; in particular, O/p = Fp.

Lemma 13.5 (Nakayama’s Lemma). Let R be a local ring with max-
imal ideal p, M a finitely generated R module. Suppose pM = M .
Then M = 0. In particular, if N ⊂ M is a pair of finitely generated
R-modules such that N/pN = M/pM then N = M .

Proof. Say M is generated by m elements e1, . . . , em, and assume the
statement for modules with fewer generators. There exists an expres-
sion

e1 =
∑
i

aiei

with ai ∈ p. Thus

(1− a1)e1 =
∑
i>1

aiei

But 1 − a1 /∈ p, so it is a unit; thus M has fewer than m generators,
and we conclude. For the final statement, we apply the first statement
to M/N . Every element m ∈M can be written am+n for some a ∈ p
and n ∈ N , in other words M/N = pM/N . �

Proposition 13.6. Let R denote the localization of O at p. Then
R = Z(p)[ζ].

Proof. Let n = φ(pr), α = 1− ζ. The ring R has a unique prime ideal
(α) dividing p. Consider S = Z(p)[ζ]. It is a Z(p)-submodule of R.
We are going to apply Nakayama’s Lemma. It suffices to show that
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the map S → R/pR is surjective. But pR = pnR. Thus R/pR has a
composition series

R/pR ⊃ p/pR ⊃ p2/pR · · · ⊃ pn−1/pR.

As in the proof that
∑
eifi = n, we know that each pi/pi+1 is isomor-

phic to Fp. It follows that as a vector space,

R/pR = Fp + Fpα + Fpα2 + · · ·+ Fpαn−1

which is the image of S. �

Now p is the only prime that ramifies in K. So to show that OK =
Z[ζ] it suffices to show that they have the same discriminant after
localization at p. But we have just seen that the rings become equal
after localization at p. Thus

Proposition 13.7. OK = Z[ζ].

Theorem 13.8. Let n be any integer, K = Q(ζn). Then [K : Q] =
φ(n).

Proof. This is an induction on the number of distinct primes dividing
n. Suppose n = n′pr where (p, n′) = 1. So we have K ⊃ K ′ = Q(ζn′)
and K ⊃ L = Q(ζpr). Because p is totally ramified in L, it is also
totally ramified in any intermediate extension. But p is unramified in
K ′. So K ′ ∩ L = Q. On the other hand, K = K ′L, and one knows
by Galois theory that the map Gal(K/Q) → Gal(K ′/Q) × Gal(L/Q)
has image the set of {x, y} ∈ Gal(K ′/Q)×Gal(L/Q) such that x and
y have the same restriction to K ′ ∩ L. In other words, the map is
surjective. It follows that [K : Q] = [K ′ : Q][L : Q]. �

One also proves that OK = Z[ζn], but for this one needs the full
theory of the discriminant.


