ALGEBRAIC NUMBER THEORY W4043

Homework, week 9, due April 7

1. Hindry's book, p. 160, Exercise 6.9.
2. An arithmetic function is a function $f: \mathbb{N} \rightarrow \mathbb{C}$. An arithmetic function f is multiplicative if $f(a b)=f(a) f(b)$ whenever a and b are relatively prime.

Suppose f and g are two arithmetic functions. Define the convolution

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

(a) Let $\tau(n)$ denote the number of integers dividing n. Let $\mathbf{1}$ be the function defined by $\mathbf{1}(n)=1$ for all n. Show that $\mathbf{1} * \mathbf{1}=\tau$.
(b) Suppose f and g are multiplicative functions. Show that $f * g$ is also multiplicative.
(c) Define the Möbius function μ to be the unique multiplicative function such that $\mu(1)=1, \mu(p)=-1$ for any prime p, and $\mu(n)=0$ if n is not square-free. Let f be the function $f(n)=n$ for all n. Compute $f * \mu$.
(d) Define the von Mangoldt function Λ by $\Lambda(1)=0, \Lambda(n)=\log (p)$ if $n=p^{i}$ for some prime $p, \Lambda(n)=0$ if n is not a prime power. Let

$$
D(s)=\sum_{n} \frac{\Lambda(n)}{n^{s}} .
$$

Show that $D(s)$ converges absolutely for $\operatorname{Re}(s)>1$ and that, on the half plane $\operatorname{Re}(s)>1$, we have the equality

$$
D(s)=-\frac{\zeta^{\prime}(s)}{\zeta(s)}
$$

where $\zeta(s)=\sum_{n} \frac{1}{n^{s}}$ is the Riemann zeta function.

