ALGEBRAIC NUMBER THEORY W4043

Homework, week 8, due March 31

Let n be a positive integer. A Dirichlet character modulo n is a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ with the following properties:
(1) $\chi(a b)=\chi(a) \chi(b)$.
(2) $\chi(a)$ depends only on the residue class of a modulo n.
(3) $\chi(a)=0$ if and only if a and n have a non-trivial common factor.

It follows that a Dirichlet character modulo n can also be considered a function $\chi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}$.

Let $X(n)$ denote the set of distinct Dirichlet characters modulo n. We consider $X(p)$ when p is prime and show it forms a cyclic group with identity element χ_{0} defined by $\chi_{0}(a)=1$ if $(a, p)=1, \chi_{0}(a)=0$ if $p \mid a$.
2. Show that for any $\chi \in X(p), \chi(1)=1$, and $\chi(a)$ is a $(p-1)$ st root of 1 for all $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
3. For all $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, show that $\chi\left(a^{-1}\right)=\bar{\chi}(a)$ where $\bar{\chi}$ is the complex conjugate function.
4. Show that $\sum_{a \in \mathbb{Z} / p \mathbb{Z}} \chi(a)=0$ if $\chi \neq \chi_{0}$.
5. We show that $X(p)$ is a cyclic group of order $p-1$ and that, for any $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}, a \neq 1$. there exists $\chi \in X(p)$ such that $\chi(a) \neq 1$.
(a) Bearing in mind that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a cyclic group, show that $X(p)$ has at most $p-1$ elements.
(b) Show that $X(p)$ has the structure of abelian group.
(c) Let g be a cyclic generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$and define a function λ : $\mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ by

$$
\lambda\left(g^{k}\right)=e^{\frac{2 \pi i k}{p-1}} ; \lambda(0)=0 .
$$

Show that $\lambda \in X(p)$ and that, if n is the smallest positive integer such that $\lambda^{n}=\chi_{0}$, then $n=p-1$. Conclude that λ is a cyclic generator of $X(p)$.
(d) If $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and $a \neq 1$ then $\lambda(a) \neq 1$.

6 . Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}, a \neq 1$. Show that $\sum_{\chi \in X(p)} \chi(a)=0$.
7. Let d be a divisor of $p-1$. Show that the set of $\chi \in X(p)$ such that $\chi^{d}=\chi_{0}$ is a subgroup of order d.

