ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 7, due March 24

If K is a number field, the letters r_{1} and r_{2} designate respectively the number of real embeddings and pairs of complex conjugate embeddings of K.

1. (a) Let $L \supset K$ be finite extensions of \mathbb{Q}. Show that if the prime p ramifies in K / \mathbb{Q} then it ramifies in L / \mathbb{Q}. Give an example to show that the converse doesn't hold.

Let K be the splitting field over \mathbb{Q} of the polynomial $X^{1} 3-1$.
(b) List the intermediate fields K_{i} between K and \mathbb{Q} and for each i, use Galois theory to find $\alpha_{i} \in K$ such that $K_{i}=\mathbb{Q}\left(\alpha_{i}\right)$.
(c) Find a cyclic generator of the multiplicative group of the $\mathbb{Z} / 13 \mathbb{Z}$. Find elements in $(\mathbb{Z} / 13 \mathbb{Z})^{\times}$ of order $2,3,4$, and 6 . (Hint: $26=2 \times 13$.)
(d) Use the results of (c) to find the order of every number between 1 and 12 in $(\mathbb{Z} / 13 \mathbb{Z})^{\times}$.
(e) Use cyclotomic reciprocity to determine the factorization of the prime ideals (17), (29), (31) in the integer rings of each of the fields K_{i} listed in part (b).
2. The function $D\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in Hindry's exercise 6.15 of Hindry's book, p. 120, is called the discriminant of the basis $\left(x_{1}, \ldots, x_{n}\right)$. Compute discriminants of several bases of of the ring of integers in $\mathbb{Q}(\sqrt{d})$, where d is a square-free integer.
3. In the notation of Hindry's exercise, we let p be a prime number, r a positive integer, and let $F(X)=\left(X^{p^{r}}-1\right) /\left(X^{p^{r-1}}-1\right)$, a polynomial of degree $\phi\left(p^{r}\right)$ where ϕ denotes the Euler function. Let $K=\mathbb{Q}\left(\zeta_{r}\right)$ be the splitting field of F where ζ is a root of F, and therefore a primitive p^{r} th root of unity.
(a) Suppose $r=1$. Show that the discriminant of the basis $\left\{1, \zeta_{1}, \zeta_{1}^{2}, \ldots, \zeta_{1}^{p-2}\right\}$ is equal to $\pm p^{p-2}$.
(b) Determine the sign in (a).
(c) Now for any r, show that $F(X)$ (denoted $\Phi_{p^{r}}$ in class) is irreducible in $\mathbb{Q}[X]$ by using Eisenstein's criterion.
(d) Show that the discriminant of the basis $\left\{1, \zeta_{r}, \zeta_{r}^{2}, \ldots, \zeta_{r}^{\phi\left(p^{r}\right)-1}\right\}$ is equal to $\pm p^{p^{r-1}(p r-r-1)}$. (You will find it convenient to use the result of (a).)
(e) Without using the fact that the ring of integers of $\mathbb{Q}\left(\zeta_{r}\right)$ is generated over \mathbb{Z} by ζ_{r}, prove that p is the only prime that ramifies in $\mathbb{Q}\left(\zeta_{r}\right)$ by using the calculation in (d) and general properties of discriminants.

