ALGEBRAIC NUMBER THEORY W4043

Homework, week 5, due February 24

1. Let $K=\mathbb{Q}(\sqrt{-3})$.
(a) Find the discriminant of K.
(b) Use (a) to show that K has class number 1.
2. Exercises 6.13 and 6.16 on pp. 119-20 in Hindry's book. You will need to use Minkowski's constant, as in Corollary 5.10 on p. 110, rather than the simpler estimate given in the course.
3. Let K be the splitting field over \mathbb{Q} of the polynomial $X^{5}-1$.
(a) List the intermediate fields K_{i} between K and \mathbb{Q} and for each i, use Galois theory to find $\alpha_{i} \in K$ such that $K_{i}=\mathbb{Q}\left(\alpha_{i}\right)$.
(b) Show that there is a unique subfield $K^{\prime} \subset K$ such that $\left[K^{\prime}: \mathbb{Q}\right]$ is quadratic. Determine the set of primes $p \in \mathbb{Q}$ that ramify in K^{\prime}, and use this to write $K^{\prime}=\mathbb{Q}(\sqrt{d})$ for some integer d. What are r_{1} (the number of real embeddings) and r_{2} (the number of pairs of complex conjugate embeddings) for K^{\prime} ?
(c) For any $n>1$, show that $\phi(n)$ is divisible by 2 . Let $n=p_{1} \cdot p_{2}$ be the product of two odd primes and let K_{n} be the splitting field over \mathbb{Q} of the polynomial $X^{n}-1$. List all the subfields $L \subset K_{n}$ such that $[L: \mathbb{Q}]=2$ and determine r_{1} and r_{2} for each such L.
