ALGEBRAIC NUMBER THEORY W4043

Homework, week 3, due February 10

1. Let \mathcal{O} be the ring of integers of a number field K. A fractional ideal of \mathcal{O} is a non-zero finitely generated \mathcal{O}-submodule of K. Let $M \subset K$ be a fractional ideal of \mathcal{O}. Show that M^{-1}, defined to be the \mathcal{O}-submodule of $a \in K$ such that $a \cdot m \in \mathcal{O}$ for all $m \in M$, is again a fractional ideal.
2. Prove the following Proposition:

Proposition. Let \mathcal{O} be the ring of integers of a number field, $\left\{\mathfrak{p}_{i}, i \in \mathbb{N}\right\}$ a sequence of two-by-two distinct prime ideals. Then $\cap_{i} \mathfrak{p}_{i}=\{0\}$.
3. Let R be an integral domain with fraction field K. A multiplicative subset $S \subset R$ is a subset such that,

- $1 \in S, 0 \notin S$;
- If $s, s^{\prime} \in S$ then $s s^{\prime} \in S$.

The localization $S^{-1} R$ is the subset of K consisting of elements $\frac{r}{s}$ with $r \in R$ and $s \in S$. (Alternatively, it is the set of equivalence classes of pairs (r, s), with $r \in R$ and $s \in S$, with (r, s) equivalent to $\left(r^{\prime}, s^{\prime}\right)$ if and only if $\left.r s^{\prime}=r^{\prime} s\right)$. After convincing yourself that $S^{-1} R$ is a ring, show that
(a) If S is the set of non-zero elements of R, then $S^{-1} R=K$;
(b) If R is a Dedekind domain, then so is $S^{-1} R$ for any multiplicative subset $S \subset R$.
(c) If $I \subset R$ is an ideal, let $S^{-1} I \subset S^{-1} R$ be the ideal of $S^{-1} R$ generated by I. Show that the map

$$
I \mapsto S^{-1} I
$$

is a surjection from the set of ideals of R to the set of ideals of $S^{-1} R$. Use the proof to construct a bijection between the set of prime ideals of $S^{-1} R$ and the subset of prime ideals $\mathfrak{p} \subset R$ such that $\mathfrak{p} \cap S=\emptyset$.
(d) Let R be a Dedekind domain, $\mathfrak{p} \subset R$ be a prime ideal, let $S_{\mathfrak{p}}=$ $R \backslash \mathfrak{p}$, and define $R_{\mathfrak{p}}=S_{\mathfrak{p}}^{-1} R$. Show that $R_{\mathfrak{p}}$ is a discrete valuation ring, i.e. a Dedekind domain with a unique non-zero prime ideal. In particular, show (using problem 2) that every non-zero element $a \in R_{\mathfrak{p}}$ has a unique factorization of the form $a=u c^{b}$, where c is a generator of the unique nonzero prime ideal of $R_{\mathfrak{p}}, b$ is a non-negative integer, and u is an invertible element of R_{p}.
4. Show that the subgroup

$$
L:=\left\{(a, b, c) \in \mathbb{Z}^{3} \mid a \equiv b \quad(\bmod 5), b \equiv a+c \quad(\bmod 2)\right\} \subset \mathbb{R}^{3}
$$

is a lattice. Find a fundamental domain for L in \mathbb{R}^{3} and compute its volume.

