ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 2, due February 3, 2022

Part I: To be handed in

1. Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic extension with $d \equiv 3(\bmod 4)$, and let \mathcal{O}_{K} be the integer ring.
(a) If $x=\alpha+\beta \sqrt{d}$, with $\alpha, \beta \in \mathbb{Q}$, show that

$$
\operatorname{Tr}_{K / \mathbb{Q}}(x)=2 \alpha .
$$

(Remember that $\operatorname{Tr}_{K / \mathbb{Q}}(x)$ is the trace of the matrix of multiplication by x in K.)
(b) Let $\Lambda \subset K$ be the subset of $\lambda \in K$ such that

$$
\operatorname{Tr}_{K / \mathbb{Q}}(\lambda \cdot a) \in \mathbb{Z} \forall a \in \mathcal{O}_{K} .
$$

Show that Λ is a subgroup of K that strictly contains \mathcal{O}_{K}.
2. Show that an element $(a, b) \in \mathbb{Z}^{2}$ can be completed to a basis for \mathbb{Z}^{2} if and only if a and b are relatively prime.
3. Let K be a quadratic extension of \mathbb{Q} with integer ring \mathcal{O}_{K}. Show that not every subgroup of \mathcal{O}_{K} containing $2 \mathcal{O}_{K}$ is an ideal.
4. Let p be a prime number. Give a complete classification of all rings R that are vector spaces of dimension 2 over \mathbb{F}_{p}. (Use the fact that a finite integral domain is a field.)
5. Let $n, m \in \mathbb{Z}$. Let $I \subset \mathbb{Z}$ be the smallest ideal containing the principal ideals (n) and (m). (This is written $I=(n)+(m)$.) Show that I is generated by the g.c.d of n and m.

Part II: Review of modules and Noetherian rings

This is background for next week; exercises are not to be handed in!

1. Read and do all (or most of) the exercises on modules over a PID at http://www.imsc.res.in/~knr/14mayafs/Notes/ps.pdf
2. Study the notes on Noetherian rings and do all (or most of) the exercises at
http://www.math.columbia.edu/~harris/W40432017/Harvardnotes.pdf
(These notes were copied from an anonymous Harvard Mathematics Department website two years ago, but are no longer accessible).
3. Let A be a Noetherian ring and let $f: A \rightarrow A$ be a ring homomorphism. Prove that f is an isomorphism if and only if f is surjective.
(Hint. Assume that f is surjective and denote by I_{j} the kernel of $f^{(j)}=$ $f \circ f \circ \cdots \circ f(j$ times $)$. Show that $\left\{I_{j}\right\}$ forms an increasing sequence of ideals of A and therefore $I_{j}=I_{j+1}$ for some j Deduce that $f\left(f^{(j)}(a)\right)=$ $0 \Rightarrow f^{(j)}(a)=0$ for any $a \in A$, and use the surjectivity of f to complete the proof.)
