ALGEBRAIC NUMBER THEORY W4043

- 1. Homework, week 1, due January 27
- 1. Compute the Legendre symbols

$$\left(\frac{29}{71}\right), \left(\frac{71}{29}\right), \left(\frac{23}{19}\right), \left(\frac{19}{23}\right).$$

Show that they verify quadratic reciprocity.

- 2. Here is a way to compute $\left(\frac{-3}{p}\right)$ for any p, and thus to verify quadratic reciprocity when q=3.
 - (a) Show that \mathbb{F}_p^{\times} has an element of order 3 if and only if $p \equiv 1 \pmod{3}$.
- (b) Show that \mathbb{F}_p^{\times} has an element of order 3 if and only if the polynomial $X^2 + X + 1$ has a root in \mathbb{F}_p .
- (c) Use the quadratic formula to conclude that $(\frac{p}{3}) = (\frac{-3}{p})$, and therefore that

$$\left(\frac{p}{3}\right)\left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}\frac{3-1}{2}}.$$

- 3. A quadratic field is an extension of \mathbb{Q} of degree 2. Let $d \in \mathbb{Z}$ and assume d is not a square in \mathbb{Q} . Let $\sqrt{d} \in \mathbb{C}$ be a square root of d, and define $\mathbb{Q}(\sqrt{d})$ to be the subfield of \mathbb{C} consisting of elements of the form $\{a+b\sqrt{d}\mid a,b\in\mathbb{Q}\}$ (you may want to verify that $\mathbb{Q}(\sqrt{d})$ is a field if you haven't seen this previously).
- (a) Prove that $\mathbb{Q}(\sqrt{d})$ is a quadratic field. Show that every quadratic field is of the form $\mathbb{Q}(\sqrt{d})$ for some integer d. Show that $\mathbb{Q}(\sqrt{d})$ is a Galois extension of \mathbb{Q} and determine its Galois group, indicating the action of nontrivial elements of $Gal(\mathbb{Q}(\sqrt{d})/\mathbb{Q})$ on the typical element $a + b\sqrt{d}$.
- (b) Let d and d' be two integers that are not squares in \mathbb{Q} . Show that $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{d'})$ if and only if d/d' is a square in \mathbb{Q} . Use this result to give a complete (infinite) list of all quadratic fields.
- (c) Let $P(x) = ax^2 + bx + c \in \mathbb{Z}[x]$, with $a \neq 0$, and assume P is irreducible in $\mathbb{Q}[x]$. Let $\Delta = b^2 4ac$ be the discriminant of P. Show that $\mathbb{Q}(\sqrt{\Delta})$ is a splitting field for P. What are the possible values of Δ modulo 4?
- (d) Conversely, let $d \in \mathbb{Z}$ be a square-free integer (in other words, if p is a prime dividing d then p^2 does not divide d). Find a monic polynomial $Q \in \mathbb{Z}[x]$ with splitting field $\mathbb{Q}(\sqrt{d})$. If $d \equiv 1 \pmod{4}$ show that Q can be taken to have discriminant d; if $d \equiv 2 \pmod{4}$ or $d \equiv 3 \pmod{4}$ show that Q can be taken to have discriminant 4d.

- 4. For any positive integer n, the Euler function $\phi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n. (So $\phi(1) = 1$, $\phi(2) = 1$, $\phi(3) = 2$, etc.)
 - (a) Show that for any positive integer n,

$$n = \sum_{d|n} \phi(d).$$

- (b) Let A be an abelian group with n elements. Suppose that for every $d \mid n$ the number of elements of A of order d is at most d. Show that A is cyclic.
- (c) Let p be a prime and let k be a field of characteristic p. Let n be a positive integer prime to p. Show that the polynomial $X^n 1$ in k[X] has no multiple roots.
- (d) Let p be a prime, and let k be a finite field of characteristic p. Let n = |k| 1 be the order of the multiplicative group k^{\times} of k. Use (b) to show that k^{\times} is a cyclic group.