ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 1, due January 27
2. Compute the Legendre symbols

$$
\left(\frac{29}{71}\right),\left(\frac{71}{29}\right),\left(\frac{23}{19}\right),\left(\frac{19}{23}\right) .
$$

Show that they verify quadratic reciprocity.
2. Here is a way to compute $\left(\frac{-3}{p}\right)$ for any p, and thus to verify quadratic reciprocity when $q=3$.
(a) Show that \mathbb{F}_{p}^{\times}has an element of order 3 if and only if $p \equiv 1(\bmod 3)$.
(b) Show that \mathbb{F}_{p}^{\times}has an element of order 3 if and only if the polynomial $X^{2}+X+1$ has a root in \mathbb{F}_{p}.
(c) Use the quadratic formula to conclude that $\left(\frac{p}{3}\right)=\left(\frac{-3}{p}\right)$, and therefore that

$$
\left(\frac{p}{3}\right)\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2} \frac{3-1}{2}} .
$$

3. A quadratic field is an extension of \mathbb{Q} of degree 2 . Let $d \in \mathbb{Z}$ and assume d is not a square in \mathbb{Q}. Let $\sqrt{d} \in \mathbb{C}$ be a square root of d, and define $\mathbb{Q}(\sqrt{d})$ to be the subfield of \mathbb{C} consisting of elements of the form $\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$ (you may want to verify that $\mathbb{Q}(\sqrt{d})$ is a field if you haven't seen this previously).
(a) Prove that $\mathbb{Q}(\sqrt{d})$ is a quadratic field. Show that every quadratic field is of the form $\mathbb{Q}(\sqrt{d})$ for some integer d. Show that $\mathbb{Q}(\sqrt{d})$ is a Galois extension of \mathbb{Q} and determine its Galois group, indicating the action of nontrivial elements of $\operatorname{Gal}(\mathbb{Q}(\sqrt{d}) / \mathbb{Q})$ on the typical element $a+b \sqrt{d}$.
(b) Let d and d^{\prime} be two integers that are not squares in \mathbb{Q}. Show that $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{d^{\prime}}\right)$ if and only if d / d^{\prime} is a square in \mathbb{Q}. Use this result to give a complete (infinite) list of all quadratic fields.
(c) Let $P(x)=a x^{2}+b x+c \in \mathbb{Z}[x]$, with $a \neq 0$, and assume P is irreducible in $\mathbb{Q}[x]$. Let $\Delta=b^{2}-4 a c$ be the discriminant of P. Show that $\mathbb{Q}(\sqrt{\Delta})$ is a splitting field for P. What are the possible values of Δ modulo 4 ?
(d) Conversely, let $d \in \mathbb{Z}$ be a square-free integer (in other words, if p is a prime dividing d then p^{2} does not divide d). Find a monic polynomial $Q \in \mathbb{Z}[x]$ with splitting field $\mathbb{Q}(\sqrt{d})$. If $d \equiv 1(\bmod 4)$ show that Q can be taken to have discriminant d; if $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$ show that Q can be taken to have discriminant $4 d$.
4. For any positive integer n, the Euler function $\phi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n. (So $\phi(1)=1, \phi(2)=1, \phi(3)=2$, etc.)
(a) Show that for any positive integer n,

$$
n=\sum_{d \mid n} \phi(d) .
$$

(b) Let A be an abelian group with n elements. Suppose that for every $d \mid n$ the number of elements of A of order d is at most d. Show that A is cyclic.
(c) Let p be a prime and let k be a field of characteristic p. Let n be a positive integer prime to p. Show that the polynomial $X^{n}-1$ in $k[X]$ has no multiple roots.
(d) Let p be a prime, and let k be a finite field of characteristic p. Let $n=|k|-1$ be the order of the multiplicative group k^{\times}of k. Use (b) to show that k^{\times}is a cyclic group.

