ALGEBRAIC NUMBER THEORY W4043

Homework, week 10, due April 14

The following exercises study the basic properties of the p-adic norm. Let $x=\frac{a}{b} \in \mathbb{Q}$, with $a, b \in \mathbb{Z}$. If $x \neq 0$, write $x=p^{r} \cdot \frac{a^{\prime}}{b^{\prime}}$ with p relatively prime to both a^{\prime} and b^{\prime} and $r \in \mathbb{Z}$ (not necessarily positive), and define

$$
|x|_{p}=p^{-r} .
$$

Thus $|p|_{p}=p^{-1}$. We also define $|x|_{p}=0$.

1. Show that $|\bullet|_{p}$ has the properties of a metric:
2. For all $x \in \mathbb{Q},|x|_{p} \geq 0$, with $|x|_{p}=0$ if and only if $x=0$.
3. For all $x, y \in \mathbb{Q},|x y|_{p}=|x|_{p}|y|_{p}$.
4. For all $x, y \in \mathbb{Q},|x+y|_{p} \leq \sup \left(|x|_{p},|y|_{p}\right)$.

Item 3. is the non-archimedean (or ultrametric) property; it is stronger than the usual triangle inequality. It allows us to define \mathbb{Q}_{p} as the set of equivalence classes of infinite series

$$
\sum_{i=0}^{\infty} a_{i}, a_{i} \in \mathbb{Q} ; \lim _{i \rightarrow \infty}\left|a_{i}\right|_{p}=0
$$

where $\sum_{i=0}^{\infty} a_{i}$ and $\sum_{i=0}^{\infty} b_{i}$ are defined to be equivalent if

$$
\lim _{N \rightarrow \infty}\left|\sum_{i=0}^{N} a_{i}-\sum_{i=0}^{N} b_{i}\right|_{p}=0
$$

The p-adic norm extends to \mathbb{Q}_{p} by setting

$$
\left|\sum_{i=0}^{\infty} a_{i}\right|_{p}=\lim _{N \rightarrow \infty}\left|\sum_{i=0}^{N} a_{i}\right|_{p} .
$$

2. (a) Show that $\left|\sum_{i=0}^{\infty} a_{i}\right|_{p}$ is always either 0 or a power (positive or negative) of p.
(b) Show that $\left|\sum_{i=0}^{\infty} a_{i}\right|_{p}=\left|\sum_{i=0}^{\infty} b_{i}\right|_{p}$ if $\sum_{i=0}^{\infty} a_{i}$ and $\sum_{i=0}^{\infty} b_{i}$ are equivalent.
3. (a) $a \in \mathbb{Q}, a \neq 0$. Show that $|a|_{p}=1$ for all but finitely many prime numbers p.
(b) (The product formula) Let $a \in \mathbb{Q}, a \neq 0$. Let $|a|$ be the usual absolute value (equal to a if $a>0$ and to $-a$ if $a<0$. Show that

$$
|a| \cdot \prod_{p}|a|_{p}=1,
$$

where the product is taken over all prime numbers. (By (a), this is actually a finite product.)
4. Define the adèle group \mathbf{A} to be the subgroup of the direct product $\mathbb{R} \otimes \prod_{p} \mathbb{Q}_{p}$, where the product is taken over all prime numbers, of elements $\left(a_{\mathbb{R}},\left(a_{p}\right)\right)$ such that $\left|a_{p}\right|_{p} \leq 1$ for all but finitely many p. (The number of p such that $\left|a_{p}\right|_{p}>1$ depends on the element but it must always be finite.

Show that there is an injective homomorphism $i: \mathbb{Q} \rightarrow \mathbf{A}$. Show that the set of $x \in \mathbb{Q}$ such that $|x|_{p} \leq 1$ for all p is equal to \mathbb{Z}.

