1. (a) Let \(q(X,Y) = aX^2 + bXY + cY^2 \) be a positive-definite binary quadratic form with integer coefficients. Assume it has discriminant \(\Delta = -7 \) and is reduced. Recall that a reduced quadratic form has the property that \(a \leq \sqrt{|\Delta|}/3 \approx 1.53 \). Give the possible values for \((a,b,c) \).

(b) Use the result of (a) to determine the class number of \(K = \mathbb{Q}(\sqrt{-7}) \).

(c) For each \(q \) as in (a), determine the set of primes \(p \) represented by \(q \). What is their relation to the set of primes that split in \(K \)?

Dirichlet characters

Let \(n \) be a positive integer. A Dirichlet character modulo \(n \) is a function \(\chi : \mathbb{Z} \to \mathbb{C} \) with the following properties:

1. \(\chi(ab) = \chi(a)\chi(b) \).
2. \(\chi(a) \) depends only on the residue class of \(a \) modulo \(n \).
3. \(\chi(a) = 0 \) if and only if \(a \) and \(n \) have a non-trivial common factor.

It follows that a Dirichlet character modulo \(n \) can also be considered a function \(\chi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{C} \).

Let \(X(n) \) denote the set of distinct Dirichlet characters modulo \(n \). We consider \(X(p) \) when \(p \) is prime and show it forms a cyclic group with identity element \(\chi_0 \) defined by \(\chi_0(a) = 1 \) if \((a,p) = 1 \), \(\chi_0(a) = 0 \) if \(p \mid a \).

2. Show that for any \(\chi \in X(p) \), \(\chi(1) = 1 \), and \(\chi(a) \) is a \((p-1)\)st root of \(1 \) for all \(a \in (\mathbb{Z}/p\mathbb{Z})^\times \).

3. For all \(a \in (\mathbb{Z}/p\mathbb{Z})^\times \), show that \(\chi(a^{-1}) = \overline{\chi(a)} \) where \(\overline{\chi} \) is the complex conjugate function.

4. Show that \(\sum_{a \in \mathbb{Z}/p\mathbb{Z}} \chi(a) = 0 \) if \(\chi \neq \chi_0 \).

5. Show that the Legendre symbol \(a \mapsto \left(\frac{a}{p} \right) \) for \((a,p) = 1 \), extended to take the value 0 at integers divisible by \(p \), defines a Dirichlet character modulo \(p \) that is different from \(\chi_0 \).