
2. Let $d > 0$ be a square-free positive integer congruent to 3 (mod 4).
 (a) Every unit $u \in \mathbb{Z}[\sqrt{d}]$ is of the form $a - b\sqrt{d}$ where $a^2 - db^2 = \pm 1$, and
 the group Γ of units is the product of an infinite cyclic group with $\{\pm 1\}$.
 Consider the subset Σ of Γ consisting of

 $u_i = a_i - b_i\sqrt{d}$

 such that $a_i > 0, b_i > 0$, ordered so that $b_1 \leq b_2 \leq b_3 \ldots$.
 Show that u_1 and -1 are generators of Γ.

 The element u_1 is called the fundamental unit of $\mathbb{Z}[\sqrt{d}]$.

 (b) Show that the following algorithm finds u_1: Letting $b = 1, 2, 3, \ldots$, consider the quantities $q^\pm(b) = db^2 \pm 1$. Let b_1 be the smallest positive integer such that either $q^+(b_1)$ or $q^-(b_1)$ is a perfect square. Let a_1 be the positive square root of $q(b_1)$; then $u_1 = a_1 - b_1\sqrt{d}$.

 (c) Use this algorithm to find the fundamental units u_1 of $\mathbb{Z}[\sqrt{7}], \mathbb{Z}[\sqrt{11}], \mathbb{Z}[\sqrt{15}]$. In each case determine $N_{K/\mathbb{Q}}(u_1)$, where $K = \mathbb{Q}(\sqrt{d})$ in each case.

3. As Hindry shows on p. 99, the ring $R = \mathbb{Z}[\sqrt{10}]$, which is equal to the ring of integers in $\mathbb{Q}(\sqrt{10})$, is not a principal ideal domain. Indeed, the integer 9 has two inequivalent factorizations:

 $9 = 3^2 = (\sqrt{10} - 1)(\sqrt{10} + 1)$.

 (a) Show that $3 + \sqrt{10}$ is a unit in R. Use this fact to confirm that the two factorizations are indeed inequivalent.

 (b) The integer 10 is definitely a square modulo 3. What is the prime factorization of the ideal $(3) \subset R$?

 (c) Use the Minkowski bound to show that the class number of $\mathbb{Q}(\sqrt{10})$ is 2.

4. Let R be a Dedekind ring with only finitely many prime ideals. Show that R is a PID. (Hint: say p_1, p_2, \ldots, p_e are the prime ideals. Find an element $x_i \in p_i$ that is not in any of the p_j with $j \neq i$, and factor the ideal (x_i). Another piece of information is necessary.)