GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Iris Rosenblum-Sellers

Homework 9

1) List the isomorphism classes of abelian groups of the following orders: 27, 200, 605, 720

Generally, the isomorphism classes of finite abelian groups of a given order are determined by the prime factorizations of the order; for a maximal prime power \(n\) such that \(p^n\) is a factor of \(|G|\), and \(p^{n+1}\) is not, there are the partition function of \(n\) ways to permute the \(p\)-group components whose orders are powers of \(p\). In practice, we permute each prime factor component individually, and mix-and-match.

27: \(\mathbb{Z}_{27}, \mathbb{Z}_3 \times \mathbb{Z}_9, \text{ and } \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3\). This one is easy, since it’s a prime power; we have only one prime component to permute, so there are \(p(3) = 3\) options.

200: \(200 = 2^2 \times 5^2\), so we do each separately; we should end up getting \(p(3) \times p(2) = 6\) options;

\[
\mathbb{Z}_{200} = \mathbb{Z}_8 \times \mathbb{Z}_{25}, \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_{25}, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}, \mathbb{Z}_5 \times \mathbb{Z}_5, \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_5, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5, \mathbb{Z}_5 \times \mathbb{Z}_5
\]

605: \(605 = 5 \times 11^2\). There are \(p(1) \times p(2) = 2\) options, so just \(\mathbb{Z}_5 \times \mathbb{Z}_{121}\), and \(\mathbb{Z}_5 \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}\).

720: \(720 = 5 \times 12^2\). Same deal with this one; \(\mathbb{Z}_5 \times \mathbb{Z}_{144}, \mathbb{Z}_5 \times \mathbb{Z}_{12} \times \mathbb{Z}_{12}\).

2) Judson 13.3: 6, 8

6: Let \(G\) be an abelian group of order \(m\). If \(n\) divides \(m\), prove that \(G\) has a subgroup of order \(n\).

Proof. We first reduce to the case where \(m = p^\alpha\), \(p\) prime. To do this, suppose we had shown this statement for primes. Then if we let \(m = \prod p_i^{\alpha_i}\), the prime factorization of \(m\). \(n = \prod p_i^{\beta_i}\), where each \(\beta_i \leq \alpha_i\), because \(n|m\). Then we view \(m\) as the product of \(n\) \(p_i\)-groups, which follows from the chinese remainder theorem. We call these \(P_i\). By our assumption that the statement holds for \(p\)-groups, for each \(p_i\)-group \(P_i\), we can pick a subgroup of \(P_i\) of order \(p_i^{\beta_i}\), which we call \(Q_i\). Then each of these \(Q_i\)’s are subgroups of \(G\), and they’re *normal*, since \(G\) is abelian. Then their product, \(Q_1Q_2\ldots Q_n\), is a subgroup of \(G\). Also, since these groups have trivial overlap, and \(G\) is abelian, we have \(|Q_1Q_2\ldots Q_n| = n\). This amounts to saying that for any \(g_1, g_2 \in Q_1, h_1, h_2 \in Q_1, g_1h_1 = g_2h_2 \Rightarrow g_1 = g_2, h_1 = h_2\); i.e. every tuple of elements of the \(Q_i\)’s is distinct. However, we know that they have trivial overlap, since they’re subgroups of trivially overlapping \(P_i\)’s so \(g_1g_2^{-1} = h_1h_2^{-1}\) implies that they’re both the identity. So from the statement for prime powers, we have the general statement; it remains to show the statement for prime powers. We now reduce to the cyclic case similarly. Let \(m = p^\alpha, n = p^\beta, \beta \leq \alpha\). An abelian group of order \(p^\alpha\) of the form \(\prod_{i=1}^{\alpha} \mathbb{Z}_{p^k_i}\), where \(\sum k_i = \alpha\). If the proposition is true for cyclic groups, we pick \(j_i \leq k_i; \sum j_i = \beta\), and let \(Q_i\) be subgroups of the \(\mathbb{Z}_{p^k_i}\), of order \(p^\beta\). We have the same situation as before where \(Q_1Q_2\ldots Q_n\) is a subgroup of order \(p^\beta\) = \(n\). It now remains to show for cyclic \(p\)-groups. Then let \(G = \mathbb{Z}_{p^\alpha}\) for some \(\alpha\), and let \(n = p^\beta\) for some \(\beta \leq \alpha\). Let \(H := \langle [p^\alpha, p^\beta]\rangle\). We note that \([p^\alpha, p^\beta] = [p^\beta, p^\alpha] = [p^\alpha] = [0]\), so \(|H| \leq p^\beta\). However, \([p^\alpha, p^\beta]^k = [0] \Rightarrow kp^\alpha = qp^\beta \Rightarrow k = qp^\beta\), for some \(q \in \mathbb{Z}\), so \(k > 0 \Rightarrow k \geq p^\beta \Rightarrow |H| \geq p^\beta \Rightarrow |H| = p^\beta\).

8) Show that if \(G, H, K\) are finitely generated abelian groups, and \(G \times H \cong G \times K\), then \(H \cong K\). Give a counterexample to show that this is not true in general.
We split \(G = \prod G_i \) into a unique ordered decomposition form, where \(G_i \) are cyclic, \(H = \prod H_i, K = \prod K_i \) likewise. Then we have \(\prod G_i \times \prod H_i \cong \prod G_i \times \prod K_i \). By uniqueness of the decompositions, we have that each component of the left is isomorphic to the same-numbered component on the right, so each \(H_i \) is isomorphic to each \(K_i \), so the product of the \(H_i \)’s, \(H \) is isomorphic to the product of the \(K_i \)’s, \(K \). Then to show the converse in general, let \(G = \prod_{i=1}^{\infty} \mathbb{Z}, H = \mathbb{Z}_n \), and let \(K \) be trivial. \(G \times H \cong G \times K \), just by the principle “\(\infty + 1 = \infty \)” i.e., let \(\Phi: G \times H \rightarrow G \) be defined by, if \((b, g_1, g_2, \ldots) \in H \times G, \Phi(b, g_1, g_2, \ldots) = (b, g_1, g_2, \ldots) \). This is an isomorphism. Of course, \(H \not\cong K \).

3) Find the smallest \(n > 42 \) such that there is exactly one isomorphism class of abelian groups of order \(n \) and exactly one isomorphism class of abelian groups of order \(n + 1 \). Justify your answer, including why there is no smaller \(n \).

We note that it is exactly equivalent for there to be exactly one isomorphism class of abelian groups of order \(n \) and for the prime factorization of \(n \) to have no multiplicities greater than 1 for a given prime, by the statement we expressed in 1 about the partition function. Then we just proceed in order from \(n = 43 \) to \(n = 44 \). 43 is prime, but 44 = \(2^2 \times 7 \), so that rules out 43 and 44. 45 = \(5 \times 3^2 \), which rules out 45. 46, however, is 23 \times 2, which are both multiplicity 1, and 46 + 1 = 47 which is prime, so 46 works.

4) Let \(n > 1 \) and \(m > 1 \) be integers. In the next question, we recall that if \(a \in \mathbb{Z} \) and \(x \in \mathbb{Z}_n \), we can define \(ax \in \mathbb{Z}_n \) by letting \(\hat{x} \) be any element of \(\mathbb{Z} \) with residue class \(x \) modulo \(n \) and letting \(ax \) denote the residue class of \(a\hat{x} \) modulo \(n \).

a) Show that if \(a \) and \(d \) are integers such that \((a, n) = (d, m) = 1\), then there is an automorphism \(\alpha_{a,d}: \mathbb{Z}_n \times \mathbb{Z}_m \rightarrow \mathbb{Z}_n \times \mathbb{Z}_m \), such that for all \((x, y) \in \mathbb{Z}_n \times \mathbb{Z}_m \), we have \(\alpha_{a,d}(x, y) = (ax, dy) \).

Proof. We have the definition of \(\alpha \) already; it suffices to show that it’s an isomorphism. It is a homomorphism; we note that \(\alpha_{a,d}((x_1, y_1) + (x_2, y_2)) = \alpha_{a,d}(x_1 + x_2, y_1 + y_2) = (a(x_1 + x_2), d(y_1 + y_2)) = (ax_1, dy_1) + (ax_2, dy_2) = \alpha_{a,d}(x_1, y_1) + \alpha_{a,d}(x_2, y_2) \). Then it suffices to show that it’s invertible. We consider \([a] \in \mathbb{Z}_n, [d] \in \mathbb{Z}_m \). This is valid because they’re relatively prime to \(n \) and \(m \) respectively by assumption. Then let \([b] : b \in [1, n - 1] \cap \mathbb{Z}, [b] = [a]^{-1}, [c] = [d]^{-1} \) in this group. Then consider \(\alpha_{b,c} \). It clearly commutes with \(\alpha_{a,d} \) because multiplication does, and \(\alpha_{b,c}(\alpha_{a,d}(x, y)) = (abx, cdy) \). By assumption, \(ab = kn + 1, cd = jm + 1 \) for \(k, j \in \mathbb{Z} \), so we have \(\text{RHS} = (knx + x, jmy + y) \equiv (x, y) \), so this is a proper inverse. Therefore, \(\alpha \) is an automorphism.

b) Suppose \((n, m) = 1\). Show that the group \(\mathbb{Z}_{nm} \) has a unique subgroup \(A_n \) of order \(n \) and a unique subgroup \(A_m \) of order \(m \). Write down an isomorphism \(A_n \times A_m \cong \mathbb{Z}_{nm} \).

Proof. Existence is clear; let \(A_n = \{[m]\}, A_m = \{[n]\} \). For uniqueness, we recall that any subgroup of a cyclic group is cyclic, so it suffices to show that if \([x] = n, x = km \) for some \(k \), and likewise for \(A_m \); by symmetry, it suffices to show just for \(n \). If \([x] = n \), then \(nx = jnm \) for some \(j \), which implies \(x = jm \). Then let \(\Phi: A_n \times A_m \rightarrow \mathbb{Z}_{nm} \) map \(([1], [0]) \) to \([m]\) and \(([0], [1]) \) to \([n]\). We require it to be a homomorphism from here; we note that this works because \([([1], [0])]) = \([m]\) = \(n \), and likewise for \(m \). We note that the orders of the groups agree, so it suffices to show surjectivity, for which it suffices to write an inverse of a generator of \(\mathbb{Z}_{nm} \), since it’s cyclic. To do this, we simply use the greatest common divisor fact \(\exists x, y: xn + ym = (n, m) = 1 \); then \(\Phi([x], [y]) = [1] \).

c)

Proof. Let \(\Phi \) be an automorphism of \(\mathbb{Z}_n \times \mathbb{Z}_m \). We recall that homomorphisms are completely determined by where they send generators, and that isomorphisms preserve orders. We note that \(\Phi([1], [0]) = ([a], [0]) \) for some \(a \); to
see this, we realize that if the latter component were nonzero, it would mean that \([([a],[x]]) = n\), which means that \([x]^n = 0\), which means that \(nx = mk\) for some \(k\), which means that \(x = m, \) since \((n,m) = 1\). Likewise, \(\Phi([0],[1]) = ([0],[d])\) for some \(d\). This means that \(\Phi([x],[y]) = ([ax],[dy])\). Finally, in order for \(\Phi\) to preserve orders, we have to have \([a] = n, [d] = m\), which is equivalent to \((a,n) = (d,m) = 1\), so we have that \(\Phi = \alpha_{a,d}\). □

d)

Proof. Let \(\Phi : \mathbb{Z}_3 \times \mathbb{Z}_9 \to \mathbb{Z}_3 \times \mathbb{Z}_9\) be given by \(\Phi([x],[y]) = ([x],[3x] + [y])\). This is well-defined; the only concern is in \([3x]\), since \([x]\) is defined up to equivalence mod 3. However, if \(x_1 = x_2 + 3k\) for some \(k\), we have that \(3x_1 = 3x_2 + 9k = 3x_2\) since we’re now in mod 9. It’s also a homomorphism; \(\Phi(([x_1],[y_1]) + ([x_2],[y_2]) = ([x_1 + x_2],[3(x_1 + x_2) + y_1 + y_1]) = ([x_1],[3x_1+y_1]) + ([x_2],[3x_2+y_2]) = \Phi([x_1],[y_1]) + \Phi([x_2],[y_2])\). It’s also a map from the same space to itself, so it suffices to show surjectivity. Let \(([x],[y])\) in \(\mathbb{Z}_3 \times \mathbb{Z}_9\). Then \(\Phi([x],[y]−[3x])\), which is a well-defined element for the same reason \([3x]\) was well-defined before, is equal to \(([x],[3x]+[y]−[3x]) = ([x],[y])\). □

e)

Proof. The somewhat surprising answer is that it is iff \((a,b)\) and \((c,d)\) are linearly independent when considered as vectors over \(\mathbb{Z}_3^2\), which is in fact a vector space. To see this, we note that it’s always a homomorphism; \(M((x_1,y_1) + (x_2,y_2)) = (a(x_1 + x_2) + b(y_1 + y_2), c(x_1 + x_2) + d(y_1 + y_2)) = (ax_1 + by_1, cx_1 + dy_1) + (ax_2 + by_2, cx_2 + dy_2) = M(x_1, y_1) + M(x_2, y_2)\). Then we can express any linear map from a vector space to itself by a square matrix; in this case, it’s the matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\). This is bijective iff it’s invertible; we know from linear algebra that it’s invertible iff the rows are linearly independent, so that’s the correct condition.