
2. Howie notes, section 6.6, exercises 1 and 2.

3. Choose a subgroup H of order 2 in S_3.
 (a) Find $g \in S_3$ such that $gHg^{-1} \neq H$, thus demonstrating that H is not a normal subgroup.
 (b) Write down representatives of the sets of left cosets S_3/H and right cosets $H\backslash S_3$.

4. (from the Judson book, section 6.4, exercise 11): Let H be a subgroup of a group G and let $g_1, g_2 \in G$. Show that the following are equivalent:
 - $g_1H = g_2H$
 - $Hg_1^{-1} = Hg_2^{-1}$
 - $g_1H \subset g_2H$
 - $g_1 \in g_2H$
 - $g_1^{-1}g_2 \in H$

5. Let G denote the set of 3×3 matrices with entries in \mathbb{R}, of the form
 \[
 \begin{pmatrix}
 a & b & e \\
 c & d & f \\
 0 & 0 & \lambda
 \end{pmatrix}
 \]
 that satisfy the relation
 \[(ad - bc)\lambda = 1.\]
 (a) Show that G is a group.
 (b) Show that the subset $H \subset G$ for which $a = d = 1$ and $b = c = 0$ is a subgroup.
 (c) Show that H is a normal subgroup of G.
 (d) Let $\phi : G \to GL(2, \mathbb{R})$ be the map
 \[
 \phi\left(\begin{pmatrix}
 a & b & e \\
 c & d & f \\
 0 & 0 & \lambda
 \end{pmatrix}\right) = \begin{pmatrix}
 a & b \\
 c & d
 \end{pmatrix}.
 \]
 Show that ϕ is a homomorphism and that $\phi(g)$ is the identity matrix if and only if $g \in H$.

6. Let $n > 2$ be an integer. Show that the group of rotations of the regular n-gon is a normal subgroup of the dihedral group D_{2n}, and identify the quotient group.

Recommended reading

Howie notes, section 3.4, sections 6.1-6.3