Homework 3, due February 13: Basic properties of groups

1. Let X be a set with two elements e, f.
 (a) Can you define a binary operation
 $\star : X \times X \to X$
 that is not associative?
 (b) Suppose e is a two-sided identity for \star, in other words
 $e \star e = e, \ e \star f = f \star e = f$.
 (Here we write $e \star e$ instead of $\star(e, e)$, as usual.) How many such operations
 are there? Are they all necessarily commutative? Associative?

2. (a) Let (X, \star) and (Y, \circ) be two sets with binary operations. Suppose
 $f : X \to Y$
is a bijection that defines an isomorphism of binary structures, i.e.
 $f(x_1 \star x_2) = f(x_1) \circ f(x_2)$.
 Show that $f^{-1} : Y \to X$ is also an isomorphism of binary structures.
 (b) In the notation of (a), if $X = Y$ and $\star = \circ$, show that the identity
 map from X to itself defines an isomorphism of binary structures.

3. Let $n \geq 3$ be an integer. Let Δ_n be a regular polygon with n sides in
 the complex plane, with one vertex at the point 1 and the other vertices on
 the circle $x^2 + y^2 = 1$. Let μ_n denote the set of vertices of Δ_n.
 (a) Use either the exponential function or trigonometric functions to list
 the coordinates of the points in μ_n.
 (b) Show that the subset $\mu_n \subset \mathbb{C}$ is a group under multiplication.
 (c) Define an isomorphism of groups $f : \mathbb{Z}/n\mathbb{Z} \to \mu_n$.
 (d) How many solutions does part (c) have? Explain.

4. List all subgroups of the Klein 4 group and of the cyclic group $\mathbb{Z}/4\mathbb{Z}$.
 How many subgroups contain 3 elements in each case?

5. Let X be a set with 3 elements. How many distinct binary operations
 $X \times X \to X$
 are there?

6. A 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is idempotent if $A^2 = A$.
(a) Check that the matrices \(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) are both idempotents (you don’t need to write this down). Find an idempotent matrix that is equal to neither of these.

(b) Suppose \(A \) is idempotent and invertible. Show that \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

Recommended reading

Howie book, Chapter 1; you should do as many exercises as you can.