MODERN ALGEBRA I GU4041

Homework 1, due January 30: Sets and functions

1. Let A, B, C be subsets of the set X, so that $A^c = X \setminus A$, etc.
 (a) Find shorter descriptions of the sets $(A^c \cup A^c) \cup (A \cap B) \cup (A \setminus B)$.
 (b) Prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ by proving that each side is contained in the other.

2. (a) Let A be the set of numbers $\{2, 3, 5\}$. List all subsets of A. How many of the subsets contain an even number?
 (b) Let B be the set of numbers $\{1, 2, \ldots, 10\}$. How many subsets of B have at most 3 elements?

3. Let \mathbb{R} be the set of real numbers. For each of the following functions $f : \mathbb{R} \to \mathbb{R}$, determine whether f is injective, surjective, or bijective. If f is not surjective, determine its image.
 (a) $f(x) = 2x + 13$.
 (b) $f(x) = x^2$.
 (c) $f(x) = x^5$.
 (d) $f(x) = e^x - 1$.

4. Let S be a set. Using the definitions carefully, show that there is exactly one function from the empty set \emptyset to S. For which sets S is this function injective? Surjective?
 Bonus question, which may help clarify the first part of Problem 4: Consider the sentence “The ocean beaches of the state of Colorado have blue sand.” Use the language of set theory, and a map of the United States, to rewrite the sentence as a clearly false statement. Using the same information, rewrite it again as a clearly true statement.

5. (a) Let $A = \{(x, y) \in \mathbb{R}^2 \mid x \geq y\}$ and let $B = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$. Give simple descriptions of $A \cup B$ and $A \cap B$.
 (b) Let $A = \{(x, y) \in \mathbb{R}^2 \mid x > y\}$ and let $B = \{(x, y) \in \mathbb{R}^2 \mid x < y\}$. Give simple descriptions of $A \cup B$ and $A \cap B$.

6. Let $a, b, c, d \in \mathbb{R}$. Consider the map $\phi : \mathbb{R}^2 \to \mathbb{R}^2$:
 \[\phi(x, y) = (ax + by, cx + dy). \]
(a) Use the definitions to prove that ϕ is surjective if and only if, for all $e \in \mathbb{R}$, $f \in \mathbb{R}$, the linear equations

\[
L_1 : ax + by = e \\
L_2 : cx + dy = f
\]

have a solution.

(b) Show that ϕ is surjective if and only if ϕ is injective.

(c) Find numbers a, b, c, d, all different from 0, such that the map ϕ is not surjective.

7. Let $A = \{a_1, a_2, b_1, b_2\}$, and $B = \{a, b\}$.

(a) How many functions are there from B to A? From A to B?

(b) Write down all injective functions from B to A, and all functions from A to B that are not surjective.

Recommended reading