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Galois theory

Courses in Galois theory typically calculate a very short list of Galois
groups of polynomials in Q[X].
Cyclotomic fields. The Galois group of the cyclotomic polynomial
P(X) = Xn � 1 is isomorphic to (Z/nZ)⇥.

(Z/nZ)⇥ 3 a 7! �a : �a(⇣) = ⇣a,P(⇣) = 0.

Solving by radicals. The Galois group of the polynomial
Q(X) = Xn � a is a subgroup of Z/nZo (Z/nZ)⇥.

All other examples are deep!
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Kronecker’s Jugendtraum

Kronecker’s Jugendtraum (Hilbert’s 12th problem): find explicit
generators of abelian Galois extensions of number fields and
expressions of Galois action (as for cyclotomic fields above).
Short list: complex multiplication (Kronecker, Weber,
Shimura-Taniyama)
The Langlands program provides a systematic way to enlarge this list
to nonabelian extensions.
Galois groups are attached, not to polynomials, but to the geometry of
Shimura varieties.
(Langlands explicitly cited the Jugendtraum in this connection, but
Wikipedia is not convinced:
“serious doubts remain concerning [the Langlands program’s]
import for the question that Hilbert asked.”)
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Number theory vs. analysis

The Langlands reciprocity conjectures – one part of the full
Langlands program – unite two branches of mathematics that have
little obvious in common.
Galois representations – linear representations of �

Q

:= Gal(Q/Q)
and its subgroups of finite index – are structures that organize the
symmetries of roots of polynomials in Q[X].
Automorphic representations are structures that organize solutions to
certain families of differential equations (invariant laplacians) and
difference equations (Hecke operators) with a high degree of
symmetry.
Goal: to unite the two structures by relating them both to geometry.
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Classical modular forms

The group SL(2,Z) acts on the upper half plane H ⇢ C by linear
fractional transformations:

✓
a b
c d

◆
(z) =

az + b
cz + d

.

The modular curve of level N is the Riemann surface

M(N) = �(N)\H

where

�(N) =

⇢✓
a b
c d

◆
⌘

✓
1 0
0 1

◆
(mod N)

�
.
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Classical modular forms

Classical modular forms f : H! C of level N are the most familiar
automorphic forms.
They are solutions to the differential equations (eigenfunctions of
hyperbolic laplacian) that satisfy this symmetry:

f (
az + b
cz + d

) = (cz + d)kf (z),
✓

a b
c d

◆
2 �(N)

Because �(N) is a congruence subgroup, there are also (highly
symmetric) difference equations (Hecke operators).
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Transcendental vs. algebraic

Guiding principle: transcendental structures that look algebraic come
from algebra.
Example:

Representations of Lie groups: Invariant differential equations
on semisimple Lie groups with integral parameters have
polynomial solutions.
Hodge conjecture...
Fontaine-Mazur conjectures: Irreducible representations of the
Galois group of a number field F that look geometric come from
algebraic varieties over F.
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Galois representations

The Galois group �
Q

is profinite and is compact for a totally
disconnected topology.
One side of the correspondence consists in continuous representations

⇢ : �
Q

! GL(n,R)

R an algebraically closed field (e.g. C, or Fp, or Q̄p).
In the latter case, (if the image is contained in Qp) for each r � 0,
there is a representation

⇢X,r : �Q

! GL(n,Z/pr
Z)

which of course has finite image, and ⇢X is the unique representation
whose reduction mod pr is ⇢X,r for all r.
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Galois representations

One assumes ⇢ to be semisimple (completely reducible).
) ⇢ is determined up to equivalence by the characteristic
polynomials of a dense subset of its image. Even the traces of a dense
set of elements suffice.
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Galois representations

For n = 1, classification of ⇢ : �F = Gal(Q/F)! GL(1,R),
classification of abelian extensions of F.
Automorphic classification is class field theory, a complete theory
that focuses on the Galois group (not polynomials).
For general n, restrict the class of ⇢.
Usually one assumes ⇢ is what is called geometric.
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`-adic cohomology

The only general methods to define representations of �
Q

– to
determine the structure of Galois groups – come from algebraic
geometry.

Let X be an algebraic variety over Q (set of solutions of polynomials
in several variables with Q-coefficients).

For the next few slides the prime is called ` (we reserve p for other
purposes). Then (Grothendieck)

H⇤(X(C),Q`) := lim �H⇤(X(C),Z/`r
Z)⌦Q

is a finite-dimensional representation space for �
Q

.

A representation ⇢ of �
Q

is geometric if it is an irreducible constituent
of some H⇤(X(C),Q`).
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`-adic cohomology

For example, if X is a non-singular cubic curve, X(C) is a Riemann
surface of genus 1, and H⇤(X(C),Q`) ' Q

2
` .

So we have ⇢X : �
Q

! GL(2,Q`).
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Galois representations and cubic curves

Write the equation:

X y2 = x3 + ax + b, a, b 2 Q.

Tate conjecture (Theorem of Faltings): ⇢X (almost) completely
determines X.

Birch-Swinnerton-Dyer conjecture: ) The structure of the group
X(Q) of rational solutions to the equation of X is completely
determined by ⇢X (for varying `).
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Fontaine-Mazur conjecture
Theorem (Fontaine-Mazur conjecture)

(Wiles, Taylor, et al.) Any 2-dimensional representation that “looks
like” a ⇢X is a ⇢X .

“Looks like”: Fontaine and Mazur identify natural properties of
geometric ⇢ and conjecture that any ⇢ with these properties is
geometric:

Conjecture
(Fontaine-Mazur) ⇢ looks geometric) ⇢ is geometric.

(Appearances notwithstanding, this is a precise conjecture.)
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How to identify a (geometric) Galois representation

Each prime p provides a label for ⇢; together they suffice to identify ⇢.

If ⇢ is geometric then for almost all p, there is a well-defined
conjugacy class cp = ⇢({Frobp}) ⇢ Im(⇢).
To p and ⇢ we assign the characteristic polynomial Pp,⇢(X) of (any)
⇢(Frobp) 2 cp.
The set of (monic, degree n, non-zero constant term) polynomials
Pp,⇢(X) (almost all p) determine ⇢.

The remaining p also provide labels (by the local Langlands
correspondence).
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Geometric analogue

A longstanding analogy between Galois representations and
homomorphisms

⌧ : ⇡1(X, x0)! GL(n,C),

X a Riemann surface with base point x0.
Such ⌧ parametrize local systems of rank n over X. So local systems
on curves are the geometric analogue of Galois representations.
By the Riemann-Hilbert correspondence, ⌧ also parametrize
holomorphic linear differential equations on X with regular
singularities.
(The “geometric” condition for Galois representations corresponds
roughly to regularity of the singularities.)

Michael Harris Galois representations and automorphic forms



Langlands transform

A (hypothetical) “Langlands transform” would be a (geometric or
analytic) procedure to relate

Galois representations$ automorphic representations

Arinkin, Drinfel’d, and Gaitsgory have a precise (abstract) conjecture
in the geometric setting and a proof in dimension 2.

In the original setting of Langlands, we are very far from such a
procedure.

So we improvise with the best available structures:
Shimura varieties.
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Why Shimura varieties?

The (`-adic) cohomology H⇤(Sh) of a Shimura variety Sh has
simultaneous actions of two groups:

The Galois group �F = Gal(Q/F) for some finite extension F/Q;

and a group G(Af ) realizing symmetries of (automorphic) differential
and difference equations;

these actions commute, making the cohomology a kernel for a (very
partial) Langlands transform: if ⇧ is a representation of G(Af ),

L(⇧) = HomG(Af )(⇧,H⇤(Sh))

is a representation of �F.

These examples can be stretched to provide a complete solution,
under important restrictions, to the reciprocity problem.
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Deligne-Lusztig varieties

Let now p be prime,

G = SL(2,Fp) = {
✓

a b
c d

◆
| a, b, c, d 2 Fp, ad � bc = 1},

which acts not only on F

2
p \ 0 but also on the affine variety

X = {(x, y) 2 k2 | xyp � xpy = 1}

where k is an algebraic closure of Fp.

The torus T = {t 2 Fp2 | tp+1 = 1} acts by t(x, y) = (tx, ty) as before
and this action fixes X and commutes with the action of G.
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Deligne-Lusztig varieties

The torus T = {t 2 Fp2 | tp+1 = 1} acts by t(x, y) = (tx, ty) as before
and this action fixes X and commutes with the action of G.

A special case of the theorem of Deligne-Lusztig is

Theorem
Let ✓ be a character of T. Then

DL(✓) = HomT(✓,H1
c (X,Q`))

is (for most ✓) an irreducible (cuspidal) representation of G.

Here and below, Hi
c(⇤,Q`) denotes `-adic (étale) cohomology with

compact support, which is the appropriate cohomology theory for
varieties over finite fields.
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Deligne-Lusztig varieties

More generally, if G is the group of Fp-points of a reductive algebraic
group (for example G = GL(n,Fq) q = pr), then there is a family Xw
of Deligne-Lusztig varieties, with an action of G⇥ Tw for a finite
abelian group Tw, such that the virtual representation

EP(Xw) =
X

i

(�1)iHi
c(Xw,Q`)

decomposes as a direct sum of the form DLw(✓)⌦ ✓ as above and
every irreducible representation of G occurs in some DLw(✓).
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Role of fixed point formulas

This theorem (of Deligne and Lusztig) is proved by applying the
Lefschetz fixed point formula.
An irreducible representation ⇢ : G! Aut(V) (any finite group G)
over a field K of char. 0 is determined by the K-valued function

�⇢(g) = Tr(⇢(g)).

The trace of the action of (g, t) 2 G⇥ Tw on EP(Xw) is calculated by
the Grothendieck-Lefschetz formula if the fixed points are isolated:

Tr((g, t) | EP(Xw)) =
X

x2FixXw

Locx((g, t)),

Locx((g, t)) 2 Q`, or a more complicated formula in general.
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Role of fixed point formulas

Cohomology forms a useful “kernel” for a representation-theoretic
transform because the Lefschetz formula calculates traces.

In the automorphic situation – for example
(Drinfel’d, Lafforgue) Langlands correspondence for curves over
finite fields;
(MH-Taylor) the local Langlands correspondence for p-adic
fields

– one uses the Grothendieck-Lefschetz formula and the
Arthur-Selberg trace formula.
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Adèle groups

Let
Ẑ = lim �

N
Z/NZ '

Y

p

Zp;

Af = Ẑ⌦Q;Af ,F = Af ⌦Q

F

for any finite extension F/Q.

An automorphic representation of GL(n)F is a (continuous) vector
space representation of GL(n,Af ,F), plus a representation of
GL(n,R⌦

Q

F), that satisfy a natural compatibility property.

Example: representations of GL(n,Af ,F) in the cohomology of a
locally symmetric variety; the existence of a compatible action of
GL(n,R⌦

Q

F) is concealed in the geometry.
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How to identify an automorphic representation

Given an irreducible (admissible) representation ⇧ of GL(n,Af ) is
equivalent to giving an irreducible (smooth) representation ⇧p of
GL(n,Qp) for each prime p such that for all but finitely many p, ⇧p is
spherical – i.e. has a non-zero vector fixed by GL(n,Zp).
Irreducible spherical representations of GL(n,Qp) are in 1-1
correspondence with monic degree n-polynomials with non-zero
constant term (Shimura, Satake).
So are characteristic polynomials of Frobp.
Say (the Galois rep.) ⇢ is attached to (the automorphic rep.) ⇧ if these
polynomials match up for almost all primes p.
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Designing a Langlands transform

By analogy with the geometric examples, we would like the kernel to
be a space with four properties:

A cohomology theory for which the Lefschetz formula is valid;
Commuting actions of the two groups �F and GL(n,Af ,F) (not
quite possible for n > 2);
A good parametrization of fixed points;
The action of at least one of the groups should be large: the
shape of the fixed points shows that all desired representations
occur in the cohomology. (For Shimura varieties, the action of
G(Af ) is (tautologically) large, but not that of �F – so the
transform only goes in one direction. The reverse direction is the
Taylor-Wiles method, based on very different principles.)
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Locally symmetric varieties

Generalizing the case of classical modular forms, let G be a
semisimple matrix group over Q, K ⇢ G(R) maximal compact such
that HG = G/K is a hermitian symmetric domain.

For any discrete subgroup � ⇢ G(Q) of cofinite invariant volume in
G(R),

MG(�) := �\HG

is a complex analytic variety.

If G(R) = SU(n� 1, 1) or U(n� 1, 1), HG = Bn�1 is the unit ball in
C

n�1 (if n = 2, B1 is isomorphic to H).
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Locally symmetric varieties

If � is a congruence subgroup (like �(N) ⇢ SL(2,Q)) then MG(�) is
an algebraic variety with a canonical model over a number field E(�);
for most classical groups the canonical model was constructed by
Shimura.

For congruence �, natural difference equations (Hecke operators) for
each prime p as well as invariant differential equations (Laplacians
and higher order operators).

For nearly all prime numbers p, one also has a canonical model of
MG(�) (for most G) over a finite field of characteristic p, hence the
Grothendieck-Lefschetz formula can be applied to MG(�) as to the
Deligne-Lusztig variety.
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Adelic modular curves

Return to the case of modular curves. There is nothing special about
N. If N divides N0, there is a natural surjective map (change of level)

M(N0)! M(N)

M(N) = M(N0)/[�(N)/�(N0)]; M(1) = M(N)/SL(2,Z/NZ).

In this way one obtains a natural action of

SL(2, Ẑ) = lim �
N

SL(2,Z/NZ)

on the family of the M(N), compatible with the change of level maps.

This extends to a continuous action of SL(2,Af ) = SL(2, Ẑ⌦Q) on
the family {M(N),N 2 N}, and thus on lim�!N

H⇤(M(N)) for any
cohomology theory.
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Adelic modular curves

One prefers to work with a variant family {Sh(N),N 2 N} with an
action of GL(2,Af ).

The p-adic [note the change!] étale cohomology lim�!N
H⇤(Sh(N),Qp)

admits an action of Gal(Q/Q) that commutes with the
GL(2,Af )-action.

Theorem
(Eichler-Shimura-Deligne-Langlands-Carayol) The action of
GL(2,Af ) on lim�!N

H1
c (Sh(N),Qp)) establishes a correspondence

from irreducible (cuspidal) representations of GL(2,Af ) to
2-dimensional representations of Gal(Q/Q):

⇧ 7! L(⇧) = HomGL(2,Af )(⇧, lim�!
N

H1
c (Sh(N),Qp))).
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Adelic modular curves

The complete theorem considers non-trivial equivariant coefficient
systems as well, and obtains more general Galois representations.
It is now known in almost complete generality that this realizes the
Langlands reciprocity correspondence for most 2-dimensional
representations of Gal(Q/Q).
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Adelic Shimura varieties

Let Hn = GL(n,R)/O(n,R) · R⇥; get an adelic locally symmetric
space:

Sn(N) = {GL(n,Q)\Hn ⇥ GL(n,Af )/(I + N · M(n, Ẑ)),N 2 N}.

However, for n > 2, Hn has no complex structure and Sn(N) is not an
algebraic variety.

Functorial transfer (cf. Arthur’s new book) identifies part of the
cohomology of Sn(N) with cohomology of (adelic) Shimura varieties
attached to a unitary group G (not GL(n)).

) construction of Galois representations ⇢⇧ attached to automorphic
representation ⇧ if ⇧ ' ⇧_.
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Adelic Shimura varieties

Concretely, if G is a reductive algebraic group over Q with hermitian
symmetric space, we can construct a Shimura variety:

SG(N) = {G(Q)\HG ⇥ G(Af )/KN ,N 2 N}.

Here KN is a congruence subgroup and SG(N) is a finite union of
MG(�).
The case of G = U(n� 1, 1) (Kottwitz, Clozel, MH-Taylor, Labesse,
Shin, Morel).
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Self-dual cohomological representations

G = U(n� 1, 1): use the cohomology of the corresponding Shimura
varieties as “kernel” for a Langlands transform L(⇧),
) most of:

Theorem
(Preceding list, plus MH-Chenevier) Suppose ⇧ is a representation of
GL(n,Af ) in the (cuspidal) cohomology of {Sn(N)}, and suppose
⇧ ' ⇧_. Then

For all p there is a ⇢⇧,p : �
Q

! GL(n,Qp) attached to ⇧.
For most ⇧ (Blasius-Rogawski, “Shin regular”) ⇢⇧,p is
geometric.
For all ⇧, ⇢⇧,p looks geometric in the sense of Fontaine-Mazur.
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General cohomological representations

More recently, the duality condition has been relaxed.

Theorem
(MH, Lan, Taylor, Thorne) Suppose ⇧ is a representation of
GL(n,Af ) in the (cuspidal) cohomology of {Sn(N)}. Then for each
prime p there is a continuous ⇢⇧,p : �

Q

! GL(n,Qp) attached to ⇧.

We can replace Q by any totally real or CM field, but Scholze has
proved much stronger results, for example

Theorem
(Scholze) Let ⇧ be a representation of GL(n,Af ) on the mod p
cohomology of {Sn(N)}. Then there is a continuous
⇢⇧,p : �

Q

! GL(n,Fp) attached to ⇧.
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p-adic approximation

The Galois representations in the last theorems cannot be obtained by
a Langlands transform.
Instead, one constructs the representations by successive (p-adic)
approximation – gluing together 2n-dimensional mod pr

representations attached to varying self-dual ⇧r on GL(2n,Af ) – and
then cuts the result into two pieces, one of which is ⇢⇧,p.

Scholze’s method recovers the representations in [HLTT], as well as
the mod p representations. He uses a completely new kind of p-adic
geometry (perfectoid spaces) to do this. The ⇧ in his theorem is
purely topological and has no obvious connection to automorphic
forms. This is the first result of this time, and no one can tell how far
he will be able to go with his methods.
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What next?

(1) It’s impossible to prove the ⇢⇧,p are geometric using Shimura
varieties. For the mod p representations, it’s not even clear what
sense to give the question.

(2) Do the (characteristic zero) representations look geometric? (Ila
Varma, work in progress)

(3) Ramanujan conjecture (purity)? Completely open.
(4) For ⇧ not cohomological, a serious barrier; practically no ideas.

Michael Harris Galois representations and automorphic forms


