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To Vadim Schechtman

1. Introduction

The mod p representation theory of p-adic groups began with the
papers [5, 6] that treated the case of G = GL(2, K), where K is a non-
archimedean local field. Those papers already revealed an interesting
dichotomy that continues to dominate the subject. On the one hand, if
B ⇢ G is a Borel subgroup, then any homomorphism � from B to F⇥,
where F is an algebraically closed field of characteristic p, gives rise in
the usual way to a principal series representation

(1.1) I(�) = indGB� = {f : G ! F | f(bg) = �(b)f(g)}.
This is non-normalized induction, and a moment’s thought will con-
vince you that this is the only kind of induction possible, because the
values of the modulus character equal zero in F. One imposes the
condition that f 2 I(�) is locally constant. The I(�) are all smooth

as this is usually understood in the representation theory of p-adic
groups: every vector in I(�) is invariant under an open compact sub-
group. The irreducible constituents of I(�) were already determined
by Barthel and Livné. On the other hand, any irreducible smooth rep-
resentation ⇡ of a p-adic group G is locally finite for any open compact
subgroup; it follows that ⇡ is necessarily generated by a vector fixed
under a given pro-p subgroup, because any finite-dimensional smooth
F-representation of a pro-p group contains a fixed vector.

In particular, lettingO denote the ring of integers inK, I ⇢ GL(2,O)
an Iwahori subgroup, and I(1) ⇢ I its maximal pro-p-subgroup, we see
that any irreducible smooth ⇡ is generated by its I(1)-fixed vectors.
In characteristic zero this would imply that ⇡ is a subquotient of a
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principal series representation, but in characteristic p there are super-

singular representations ⇡ that cannot be realized in this way. These
are constructed by a di↵erent sort of induction: let U = indGI(1)1 be
the universal module. The Hecke algebra H(G, I(1)) is defined to be
EndG(U)opp, so that the I(1)-invariants of any ⇡ becomes a left mod-
ule over H(G, I(1)); it is canonically identified with the convolution
algebra of compactly supported F-valued functions on G that are left-
and right-invariant under I(1). The center Z(G, I(1)) of the algebra
H(G, I(1)) is a commutative subalgebra T that is identified with the
usual spherical Hecke algebra in cases of interest. For any parabolic
subgroup P ⇢ G with Levi factor M , a version of the Satake iso-
morphism identifies Z(G, I(1)) with a subalgebra of the Hecke algebra
H(M, IM(1)) attached to M . A quotient ⇡ of U is supersingular if
Z(G, I(1)) acts on ⇡ by a character that cannot be extended to the
center Z(M, IM(1)) of the algebra H(M, IM(1)) for any M other than
G (see [1]).

Breuil gave a complete classification of the supersingular represen-
tations when K = Qp, and defined a Langlands parametrization of the
representations of GL(2,Qp) by 2-dimensional representations of the
Weil-Deligne group of Qp. This parametrization was a landmark in the
development of the p-adic local Langlands program, and was expected
to set the pattern for more general groups. This was not to be, how-
ever. The analysis of parabolically induced representations continued
to progress, and has culminated recently in a complete determination
of irreducible constituents of such representations by Abe, Henniart,
Herzig, and Vignéras [1].

However, this work, like previous results of several of the authors,
reduces the classification of all irreducible smooth representations of
a p-adic group G to the classification of supersingular representations
of its Levi subgroups. Except when G is GL(2,Qp) or SL(2,Qp), the
classification of supersingular representations of G is unknown and ex-
hibits a variety of unexpected and unwelcome features. There is a func-
torial equivalence between irreducible 2-dimensional representations of
Gal(Qp/Qp) with coe�cients in F and supersingular representations
of G = GL(2,Qp). When G = GL(2, F ) for any p-adic local field F
other than Qp, there appear to be far more inequivalent supersingu-
lar representations of G than irreducible 2-dimensional representations
of Gal(Qp/Qp); this was shown by Breuil and Paškūnas when K is
unramified and it appears to be completely general.
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Two solutions are possible to this conundrum: make the set of ir-
reducible supersingular representations of G, by imposing some addi-
tional admissibility conditions, or enhance the set of Galois representa-
tions by adding new structure. 1 The purpose of the present paper is
not to opt for one solution rather than another but instead to present
the situation as it might be viewed from the standpoint of geometric
representation theory. This is a risky undertaking for the author but it
is also risky for the reader, who should be advised that the author can
claim no results in geometric representation theory and none in p-adic
representation since those in his thesis, which didn’t go very far.

So perhaps I should add that I would have liked to be able to o↵er
something new as a token of my friendship with Vadik Schechtman,
which began when we met in Moscow in 1989; but since I have nothing
new to o↵er, I hope at least he will find something of interest in this
survey of scattered results and barely motivated speculations.

2. Some pathologies

While reading the following list, the reader may wish to remember
the following Principle, which may serve as a definition of mathematics.

Principle 2.1. In mathematics there are no bugs, only features.

In what follows, F is a p-adic field with integer ring OF and residue
field kF and G denotes the group of F -points of a connected reductive
group over F . All representations over F of G are assumed smooth
unless otherwise indicated. The category of smooth F-representations
of G is denoted Rep(G). We let I ⇢ G be an Iwahori subgroup and
I(1) ⇢ I be its maximal pro-p subgroup. The universal module U
and the Hecke algebra H(G, I(1)) = EndG(U) were defined when G =
GL(2, F ), but the same definitions make sense for any G.

2.1. Hecke algebras. Because every irreducible smooth representa-
tion ⇡ of G is generated by its space ⇡I(1) of vectors under the pro-p-
Iwahori subgroup I(1), there is an interesting functor ⌧F : ⇡ 7! ⇡I(1)

from Rep(G) to Mod(H(G, I(1))), the category of modules over the
Hecke algebra H(G, I(1)). This and similar functors are well-known
from the characteristic-zero smooth representation theory of p-adic

1A third possibility would be simply to define a map from the set of irreducible su-
persingular representations to the set of Galois parameters, and to define a “packet”
to be a fiber of this map. In the local Langlands correspondence over C, members
of an L-packet are conjecturally classified by representations of the group of compo-
nents of the centralizer of the parameter, and one would want to find an analogue
of this structure in the mod p correspondence as well.
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groups. A theorem of Borel asserts that the functor ⌧C : ⇡ 7! ⇡I(1)

is an equivalence of categories between complex representations of G
that are generated by their I(1)-fixed vectors and modules over the
(complex) Hecke algebra of G relative to I(1). However,

Theorem 2.2. [21] Suppose G = GL(2, E) where E = F or E =
k((T )) where k is a finite field of order q = pd for some d. If ⌧F is an

equivalence of categories then E is a totally ramified extension of Qp.

I believe it is expected that Qp is in fact the only field for which
the equivalence is valid, but I don’t know whether or not this has
been proved. The situation for groups other than GL(2) (or SL(2)) is
unclear, but it seems to be generally expected that GL(2,Qp) is the
exception rather than the rule. This is taken to be one reason Breuil’s
classification of supersingular representations has not been successfully
extended to other groups.

Schneider has shown that a derived version of ⌧F does define an
equivalence of derived categories; but this does not belong in the section
on pathologies and it will be discussed at length below.

2.2. Duality. The category of smooth admissible F-representations of
G is not preserved by the natural duality. Over a field K of character-
istic other than p, the functor taking a smooth admissible representa-
tion ⇡ to it smooth contragredient ⇡_, defined to be the subspace of
Hom(⇡, K) consisting of vectors invariant under an open subgroup, de-
fines an involution of the category. Except in highly degenerate cases,
when K = F is of characteristic p, the smooth contragredient defined
as above is trivial. One is instead in a situation analogous to Pontrya-
gin duality: if F is finite, for example, a smooth F-representation ⇡ is
analogous to a discrete abelian group and its algebraic dual is compact
and contains no smooth vectors. Alternatively, a continuous p-adic
representation ⌧ of G on a p-adic Banach space (over some p-adic field
C) is called admissible, in the work of Schneider and Teitelbaum, if its
reduction modulo p is smooth and its linear dual is of finite type over
the Iwasawa algebra of any open compact subgroup of G. The natu-
ral duality in the setting of representations of G on topological vector
spaces over C thus exchanges two di↵erent categories of objects.

Kohlhaase has constructed in [18] a higher duality theory for smooth
admissible F-representations of G and shown that it has some desirable
properties, especially when G = GL(2,Qp). We return to this briefly
below in connection with Question 4.5.

2.3. Numerical correspondences. The objects on the Galois side
of the Langlands correspondence are continuous homomorphisms from
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the Weil group WF of F to the group of F-points of Langlands dual
group LG, up to equivalence (conjugation).2 When G = GL(n) the
irreducible objects can be counted. It was proved by Ollivier [22] that
the set of these objects is in bijection with the set of supersingular
modules over the Hecke algebra H(G, I(1)). Thus there is a numeri-
cal correspondence, at least for irreducible objects. In general the set
of non-trivial extensions of irreducible representations is very large (it
grows with the field F) and I don’t know whether or not any kind of nu-
merical correspondence has been attempted that takes these extensions
into account; they have no counterpart in the classical theory.

Be that as it may, the category of irreducible representations ⇡ over a
given H(G, I(1))-module M , under the functor ⇡ 7! ⇡I(1), is in general
enormous. It was first discovered by Breuil and Paškūnas in 2006 that
there are far more (uncountably more) irreducible representations than
Langlands parameters, except when G is GL(2,Qp) or SL(2,Qp) [3].

2.4. Families. The F-valued characters of the center Z(G, I(1)) cor-
respond to the F-valued points of the corresponding a�ne scheme, and
the supersingular characters form a linear subvariety of codimension
equal to the rank of Gad. Thus one can say that supersingular Hecke al-
gebra modules arise by specializing families of non-supersingular mod-
ules. When G = GL(n), the supersingular Hecke algebra modules are
expected to correspond to irreducible n-dimensional representations of
WF (and for general G to Langlands parameters that lie in no proper
parabolic subgroup of LG). Thus a Langlands correspondence that be-
haves well with respect to families would seem to require generically
reducible families of Galois representations with irreducible specializa-
tion.

3. Categories of Galois representations

If one wants to make the mod p local Langlands correspondence
into an equivalence of categories, then homomorphisms from WF to
LG(F) are not the right object for the Galois side. Representations (or
complexes of representations) of G form an additive category, whereas
Hom(WF ,

LG(F)) does not. The solution suggested by the geomet-
ric Langlands program is to treat Hom(WF ,

LG(F)) as a stack L(LG)

2As the referee pointed out, there is no di↵erence between representations mod
p of the Weil group and the Weil-Deligne group. If one is content to work with co-
e�cients in the algebraic closure of a finite field, then there is no di↵erence between
representations of the Weil group and the Galois group, and most work on the
p-adic Langlands correspondence has been concerned with Galois representations.
However, in the geometric setting, the Weil group seems more appropriate.
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and to look for an equivalence of categories between the derived cate-
gory of representations of G and a derived category of (some kind of)
sheaves on L(LG). For example, in the version of Arinkin and Gaits-
gory [2] one considers a (derived) stack called LocSysLG and introduces
a DG-category of sheaves denoted IndCohNilp

glob

(LocSys(LG)) that is
a full subcategory of the ind-completion of the DG-category of coherent
sheaves on LocSys(LG) adapted to account for Arthur parameters.

In the mod p theory, Emerton and Gee [12] have constructed a stack
(underived) that we can call L(LG)(F), when G = GL(n), where L
stands for “Langlands parameter” (and also for “local system”). This
is built in the first place out of families of Breuil-Kisin modules, which
are (one of the) variants of Dieudonné modules that can be placed in
correspondence with Galois representations with values in characteris-
tic p coe�cients. One of the salient features of this construction is that
a generically reducible family of Breuil-Kisin modules can specialize to
a module corresponding to an irreducible Galois representation. This
fits well with the property of families of mod p representations of G
already mentioned in section 2.4. Somehow the geometry of L(LG)(F),
which is a stack over a field of characteristic p, detects properties of
families in characteristic zero that are responsible for the paradoxical
specialization.

The stack of Emerton and Gee seems to meet the initial requirements
one might expect to be satisfied by the Galois side of the hypothetical
local correspondence.3 Let’s suppose we can define a (DG) category of
sheaves on this stack, denoted ?Coh(L(LG)(F)), that has the formal
properties that make it a candidate for the categorical correspondence.
Taking [2] as a model, one suspects one might want the category to
be compactly generated, and one might want the base to be “quasi-
smooth” (i.e., a local complete intersection in the derived sense: the
cohomology of the cotangent complex at each point is concentrated in
degrees �1 and 0).

3.1. Questions. From what I understand, L(LG) is constructed (for
G = GL(n)) by glueing special fibers of a mixed characteristic object
that is something like the moduli space for semi-stable Galois repre-
sentations constructed by Hartl and Hellmann as an adic space [16].
The first obvious question is

3The finite-type points of the stack actually correspond to n-dimensional repre-
sentations of the Galois group of a deeply ramified extension of the ground field F .
There are various ways to descend to the Galois group of the ground field; we will
not address this question.
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Question 3.1. Should L(LG) be a derived stack (constructed out of
derived special fibers)?

If not, then the quasi-smoothness comes down to the local complete
intersection property. I don’t know whether or not the Emerton-Gee
stack satisfies this property.

Question 3.2. What is the center of the category ?Coh(L(LG)(F))?
When G = GL(n) it seems clear (though I haven’t seen enough of the

construction) that the center should contain the ring of pseudocharac-
ters, or more generally of determinants in the sense of Chenevier [11].
Is there more? What about more general G? A generalization of pseu-
docharacters has been defined by Vincent La↵orgue in his construction
of Langlands parameters attached to automorphic representations over
function fields ([19], Proposition 11.7). His method only works with
coe�cients in an algebraically closed field of characteristic zero. Thus
one is led to the following questions:

Question 3.3. Are the data used in La↵orgue’s construction (there
denoted ⌅n) represented by a noetherian ring? Or by a derived stack?
Does this ring (or derived stack) have a natural model over Spec(Z)?

Let � be a profinite group. (In [19] � = Gal(F̄ /F ) where F is a
global field; I don’t know whether or not La↵orgue has developed a
version for the Weil-Deligne group.) For each n > 0, ⌅n(B) is defined
in ([19] 11.3) to be an algebra homomorphism from O(LG

n
//LG) to

C(�n,B); here LG
n
//LG is the geometric invariant theory quotient of

LG
n
under simultaneous conjugation by LG, viewed as a scheme over

a topological base ring E (an `-adic field in [19]), B is a topological
E-algebra, and C(•,B) denotes continuous functions. The B is not in
La↵orgue’s notation, but if we write it this way we see it is the set of
B-valued points of the “space” Mn of continuous maps (in some sense)
from �n to LG

n
//LG. As n varies, the ⌅n satisfy certain recurrence

relations, that appear to make the collection ⌅• into the set of B-valued
points of the simplicial “space” M• of continuous maps from B(�) to
B(LG)//LG.

This construction may or may not have a rigorous meaning. When E
is replaced by the finite field F with the discrete topology, the continuity
may be moot.

Question 3.4. What is the relation of the center of the category
?Coh(L(LG)(F)) and the simplicial “space” M• described above?

La↵orgue explains how his construction is equivalent to the construc-
tion of pseudocharacters for GL(n) over a field of characteristic zero.
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The same should be true when p > n; for small p Chenevier’s deter-
minants [11] provide a substitute. I don’t know whether or not anyone
has attempted to to extend Chenevier’s construction to groups other
than GL(n).

Remark 3.5. The pseudocharacter of a Galois representation plays a
small but essential role in the Taylor-Wiles method of proving modu-
larity of p-adic representations of Galois groups of number fields. The
Taylor-Wiles method, and its various extensions, starts with a surjec-
tive homomorphism from the (p-adic) deformation ring R of an abso-
lutely irreducible representation of the Galois group over F to a related
p-adic Hecke algebra T , and uses arguments from Galois cohomology
and automorphic forms to show that this is in fact an isomorphism.
The existence of the map depends on a theorem of Carayol that guar-
antees that the deformation of the Galois representation obtained using
automorphic forms can be realized with coe�cients in T , provided its
trace – in other words, its pseudocharacter – lies in T . A generalized
pseudocharacter seems necessary in order to extend the Taylor-Wiles
method to a general group LG, without dependence on an embedding
in GL(n).

4. Derived Hecke algebras

We assume in what follows that the pro-p-Iwahori subgroup I(1) ⇢ G
is torsion-free. This is true generically (when p is large relative to the
root system of G and the ramification degree of F/Q is small).

Recall that the (pro-p-Iwahori) Hecke algebraH(G, I(1)) was defined
to be EndG(U), where U is the universal smooth mod p representation
of G. I call it “universal” because it maps surjectively to any irreducible
F-representation of G, for the reasons explained above. Let

H•(G, I(1)) = RHom•(U,U)opp

which is well defined in the homotopy category of DG-algebras.
We have explained (in Theorem 2.2 and the subsequent discussion)

that the functor

(4.1) Rep(G) ! Mod(H(G, I(1)); ⇡ 7! ⇡I(1)

was shown in [21] to be an equivalence of categories for GL(2, F ) if
F = Qp but not if F is of characteristic p nor if the residue field of F
strictly contains Fp; it is not known what happens for more general G.
However, Schneider has shown in [24] that, provided I(1) is torsion-
free, the derived version of the functor (4.1) defines an equivalence of
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triangulated categories between the (unbounded) derived categories

(4.2) H : D(Rep(G)) ! D(Mod(H•(G, I(1))).

The main step in Schneider’s proof is to show that the functor H is
conservative, which is non-trivial; the rest of the proof is along the
familiar lines of the Barr-Beck theorem on adjoint functors.

4.1. Questions. Very little is known about the structure of the DG
algebra H•(G, I(1)). For example, the center of the (underived) Hecke
algebraH(G, I(1)) has been determined (in several ways: see [29], [22]).
As far as I know, no one knows the answer to the following question:

Question 4.3. What is the center of the DG algebra H•(G, I(1))?
What is its relation, if any, to the center of H(G, I(1))?

Here I have to pause to mention that there is more than one pos-
sible notion of center of a DG algebra A•, and the relations between
these are not clear to me. Experts tell me that the preferred notion
is given by the Hochschild cohomology of A•, and that this is already
a derived object. A standard reference is [7], which is written in the
generality of monoidal 1-categories, perhaps more generality than is
strictly necessary for such a concrete object as H•(G, I(1)). Even if
the Hochschild cohomology is deemed to be defined by the standard
bar complex, I wouldn’t know how to begin to compute it explicitly.
Given that the center of H(G, I(1)) has a simple presentation, this is
somewhat surprising. In any case, there is in general a canonical map
from HH0(A•) to the center of H0(A•). Thus we can add a pendant
to Question 4.3:

Question 4.4. Is the canonical map from HH0(H•(G, I(1))) to the
center of (the underived Hecke algebra) H(G, I(1)) surjective?

Schneider’s canonical construction of the DG algebra H•(G, I(1))
is unbounded in both directions, so the sense in which the center of
H(G, I(1)) acts on an H•(G, I(1))-module is not immediately clear.
Abouzaid has explained to me how to construct a canonical model
of H•(G, I(1)) as a DG algebra concentrated in non-negative degrees.
Schneider’s original paper [24] shows that H i(G, I(1)) vanishes for i
not in [0, dimG]; this definitely fails if I(1) has torsion. The higher
derived Hecke algebras H i(G, I(1)) are modules over H(G, I(1)) =
H0(G, I(1)). It is not hard to compute H i(G, I(1)) as an F-vector
space for every i, but the algebra structure is practically unknown.
Schneider has computed HdimG(G, I(1)) explicitly ([24] Proposition 6)
but even there the module structure is unclear. The only non-trivial
results seem to be due to Ollivier and Schneider; they have shown, for
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instance, that, when G = GL(2, F ), H1(G, I(1)) contains a non-zero
torsion submodule over H(G, I(1)) unless F = Qp, and that this tor-
sion submodule consists of supersingular modules; this is related to the
failure of the functor (4.1) to be an equivalence of categories.

An admissible ⇡ 2 Rep(G) defines a module of finite type H(⇡) over
H•(G, I(1)), via the functor H of (4.2); and this remains true when
⇡ is replaced by an admissible complex ⇡•, whose definition we leave
to the reader. Now the linear dual of a left H•(G, I(1))-module of
finite type is a right H•(G, I(1))-module of finite type. However, the
anti-involution g 7! g�1 of G interchanges right and left H•(G, I(1))-
modules, so there is a duality involution � on (the bounded derived
category) Db(Mod(H•(G, I(1))).

It’s not at all clear (to me) whether or not the functor H of (4.2) re-
stricts to an equivalence of bounded derived categories, so we will write
Db

H(Rep(G)) for the full subcategory of D(Rep(G)) that corresponds
to Db(Mod(H•(G, I(1))) under H.

Question 4.5. What is the duality involution on Db
H(Rep(G)) that

corresponds to � on Db(Mod(H•(G, I(1)))? What is its relation, if
any, to the higher duality theory constructed by Kohlhaase in [18]?

In this connection, it should be noted that Kohlhaase constructs a
sequence of smooth duality functors Si by sending an admissible rep-
resentation ⇡ to the Exti of the Pontryagin dual of ⇡ with a dualizing
module. As in earlier work of Schneider-Teitelbaum and Venjakob, the
category of admissible representations has a filtration and Kohlhaase
defines the notion of Cohen-Macaulay objects to be those ⇡ for which
Si vanishes outside a single dimension d(⇡) . He verifies that supercus-
pidal representations and the Steinberg representation of GL(2,Qp) are
Cohen-Macaulay in this sense with d(⇡) = 1. In general, d(⇡) can vary
for Cohen-Macaulay representations of a given group G, which lends
credence to the suggestion by Ben-Zvi that Db

H(Rep(G)) has a non-
obvious t-structure adapted to a hypothetical congruence to objects on
the Galois side.

When I(1) is no longer assumed to be torsion-free, one can replace
I(1) by a torsion-free subgroup of finite index, and the theory goes
through, but the meaning of the functor H is no longer clear. It may
or may not be relevant that the theory of pseudocharacters of GL(n)
also fails to work when p  n.

4.2. Correspondences. As noted in Section 2.3, there are far too
many irreducible supersingular objects in Rep(G) (except when G =
GL(2,Qp) or SL(2,Qp)) to match the available stock of Galois objects
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(skyscraper sheaves on L(LG)). This is one reason the categorical ap-
proach seems promising. However, the theory of mod p cohomology
of locally symmetric spaces furnishes a large collection of admissible
representations of G. In many cases this cohomology can be naturally
associated to a Galois representation; more generally, completed coho-
mology yields modules with commuting actions of G and Gal(F̄ /F ).
This global construction provides a candidate for a local correspon-
dence; this has been studied for GL(n) in many cases in the paper
[10].

Let E be a number field with a p-adic completion isomorphic to F .
Suppose for simplicity that G is split over F . Let ⇢ be a (modular)
representation of Gal(Q/E) with values in LG(F). The (still mostly
conjectural) generalizations of Serre’s conjecture assign to ⇢ a set S(⇢)
of irreducible modular representations of G(kF ), the so-called “Serre
weights” of ⇢; they are identified by their highest weights. (Actually,
as far as I know these have only been defined when G = GL(n), and
for U(3); the case of GL(2) was first studied by Buzzard, Diamond,
and Jarvis, and the case of general GL(n) by Herzig, extending earlier
work of Ash, Doud, and Pollack.) If ⇡ 2 Rep(G), we can define the
socle of ⇡ to be the maximal semisimple G(OF )-subrepresentation of ⇡.
Let G = GL(2, F ), with F 6= Qp. Given ⇢, the paper [3] then gives a
recipe (in section 11) for the socle of ⇡ in terms of the “Serre weights”
of ⇢, following [9]; the authors of [3] observe that there are irreducible
⇡ whose socles can’t possibly correspond to Galois representations ⇢.

Question 4.6. Can this socle condition be interpreted cohomologi-
cally?

I would guess not. In particular, there doesn’t seem to be a reason-
able definition of subcategory of D(Rep(G)) that distinguishes those
objects that belong in a correspondence with objects in ?Coh(L(LG)(F))
from those that don’t. Nor is it clear whether the socle condition de-
fines a meaningful restriction on D(Rep(G)) at all. Nevertheless, the
possibility of such restrictions should be taken into consideration when
reacting to the following question:

Question 4.7. Is there an equivalence of (derived or DG or 1-) cat-
egories between ?Coh(L(LG)(F)) and D(Mod(H•(G, I(1)))? Or be-
tween naturally defined subcategories of the two sides that include
everything that arises in the cohomology of locally symmetric spaces?

A first step in evaluating whether or not this is reasonable would be
to compare the answers to Questions 3.2 and 4.3. In this connection,
Corollary 8.11 of [23], which treats the case of GL(2,Qp), is extremely
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suggestive. I note that Helm has announced in [17] a conjectural an-
swer to the analogous question in the case of `-adic representations of
GL(n, F ), with F a p-adic field, p 6= `.

5. Geometric correspondences

Three proposals to define functorial correspondences between mod p
representations of G and Galois representations have been discussed in
public since the beginning of 2014. The most complete was announced
in Peter Scholze’s closing lecture at the MSRI Hot Topics workshop on
perfectoid spaces on February 21. A set of notes is available on the
MSRI website [25]. The construction applies only to GL(n, F ) and is
based on the Gross-Hopkins period map

(5.1) ⇡GH : MLT,1 ! Pn�1
F̆

.

Here F̆ is the p-adic completion of the compositum of F with the
fraction field of the Witt vectors of the algebraic closure of the residue
field of F and MLT,1 is the perfectoid Lubin-Tate moduli space over
F̆ . This space has a continuous action of GL(n, F ) ⇥D⇥, where D is
the central division algebra over F with invariant 1

n
.

The map ⇡GH is to be understood as a map of adic spaces, and
makesMLT,1 an étale GL(n, F )-torsor over Pn�1

F̆
. Thus any admissible

F[GL(n, F )]-module ⇡ gives rise to a (pro-étale) sheaf F⇡ over Pn�1
F̆

.

Fix a complete algebraically closed extension C/F̆ . The cohomology
groups H i(Pn�1

C ,F⇡) carry a continuous action of D⇥⇥WF , where WF

is the Weil group of F . Scholze has announced the following result,
whose proof is sketched in [25]:

Theorem 5.2 (Scholze). The cohomology groups H i(Pn�1
C ,F⇡) are in-

dependent of C and vanish for i > 2(n � 1). As a representation of

D⇥
, each H i(Pn�1

C ,F⇡) is admissible.

The proof is a stunning application of Scholze’s perfectoid tech-
niques. One is tempted to conjecture that �iH

i(Pn�1
C ,F⇡) realizes at

least a part of a (graded) mod p local Langlands correspondence for
the group GL(n, F ), together with a mod p Jacquet-Langlands cor-
respondence. Scholze does not go so far as to state a conjecture but
he does provide some evidence in the form of compatibility with the
global correspondence on (at least a part of) the mod p cohomology of
appropriate Shimura varieties (see Proposition 11 of [25]).

It may be possible to extend the methods of [25] to groups G other
than GL(n, F ), but only in the setting of the Rapoport-Zink spaces
attached to minuscule weights. One of the purposes of the course [26]
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was to remove this restriction by enriching the category of p-adic spaces
on which G acts. The introduction to [26] expresses the “hope” that
the moduli spaces of local shtukas constructed there can play the role
of the generalized Rapoport-Zink spaces whose conjectural properties
(and existence) have been described by Rapoport and Viehmann. In
particular, the cohomology of these spaces would also provide candi-
dates for a hypothetical mod p (and p-adic) local Langlands correspon-
dence; however, in informal remarks Scholze has mentioned that he is
focusing on `-adic cohomology, at least for the time being.

A third approach will be suggested by Fargues in reference [9] in the
bibliography of [14]. This paper has not yet been made public, but its
contents were presented during Fargues’ talk at the MSRI workshop in
2014; the link to the video of his talk on the MSRI website seems to be
missing. Fargues presented a conjectural cohomological construction
of the `-adic local Langlands correspondence for a group G/Qp, for
` 6= p. However, discussions between Fargues and Scholze appear to
have convinced one or both of them that a version of this conjecture
should be valid for ` = p as well.

The relation, if any, between the geometric constructions of Scholze
and Fargues and the hypothetical categorical correspondence described
in Section 4.2 is by no means clear. The compatibility with global cor-
respondences suggests that representations that fail the socle condition
of [3] (see 4.6) should not contribute to the correspondences just dis-
cussed. x

6. Characters

Let D be the central division algebra over F introduced in the pre-
vious section, and let G = D⇥/F⇥. This is a compact profinite p-adic
analytic group but it is also the group of F -rational points of an alge-
braic group over F . An admissible representation (�, V ) of G over F
is the direct limit of the finite-dimensional F[Gn]-modules V U

n , where
Un runs through a nested sequence of open normal subgroups of G,
Gn = G/Un, and \nUn = {1}.

As an approximation to the center of the category of admissible
complexes of F[G]-modules (however this admissibility is defined), one
might consider HH⇤

sm(F[G]) = lim �n
HH⇤(F[Gn])), with the natural

morphisms from HH⇤(F[Gn]) ! HH⇤(F[Gn+1]) defined relative to the
projection maps Gn+1 ! Gn. The advantage of working with finite
groups is that the Hochschild cohomology groups of their group alge-
bras can be computed in terms of conjugacy classes. Following the
discussion in section 7.4 of [20], which treats Hochschild homology, one
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can write HH⇤(F[Gn]) as a direct sum over conjugacy classes [�n] of
elements �n 2 Gn of the cohomology groups H⇤(Gn,�

n

,F), where Gn,�
n

is the centralizer of �n (see [20], Theorem 7.4.6; the isomorphism can
even be lifted to the chain level). If we restrict attention to sequences
of (�n 2 Gn, n � 0) where each �n is the reduction mod Un of a (nec-
essarily elliptic) regular element � 2 G, with centralizer G�, then the
corresponding piece of HH⇤

sm(F[G]) looks in the limit like the exterior
algebra on ⌦1(G�) = HomO

F

(Lie(G�),F); here G and its subgroups
G� are given the natural structure of schemes over the integer ring OF .
Since the choice of �n 2 [�n] is not canonical, one might replace ⌦1(G�)
by the conormal bundle to the conjugacy class of � 2 G.
If I understand the point of [28] and [7] correctly, the Chern char-

acter of an admissible representation (�, V ) of G would then define a
map from HH⇤

sm(F[G]) to F, which could be evaluated on
V• ⌦1(G�)

for each conjugacy class [�]. This is of course wildly speculative, not
least because I have no idea how one would go about computing such a
pairing between representations and exterior di↵erentials on Lie alge-
bras of centralizers. What I find intriguing, however, is that the regular
conjugacy classes can be transferred to inner forms of G, notably to
PGL(n, F ). The transferred conjugacy classes have representatives in
a maximal compact open subgroup K ⇢ PGL(n, F ), whose central-
izers bear the same relation to HH⇤

sm(F[K]) as the centralizers of the
original conjugacy classes bear to HH⇤

sm(F[G]). This makes it possi-
ble, at least in principle, to compare Chern characters of admissible
representations of G and its inner forms. This would provide a natural
test, as a first approximation, of the naturality of the mod p Jacquet-
Langlands correspondence constructed by Scholze, see Theorem 5.2.
Since the characters fit naturally in the framework of the categorical
theory of traces developed in [8], it may be possible to use a Lefschetz
formalism to carry out this comparison, as in [13, 27]; see also Chapter
9 of [15].
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