
p-ADIC AND ANALYTIC PROPERTIES OF PERIOD
INTEGRALS AND VALUES OF L-FUNCTIONS

MICHAEL HARRIS

1. Introduction

Let F be a CM field of degree 2d over Q, F+ ⇢ F its maximal
totally real subfield, c 2 Gal(F/F+) complex conjugation. Let ⇧ and
⇧0 be everywhere tempered automorphic representations of GL(n)

F

and GL(n� 1)
F

, respectively. We assume

⇧_ ⇠�! ⇧c; ⇧0,_ ⇠�! ⇧0,c

and both ⇧1 and ⇧0
1 are cohomological. Then ⇧ and ⇧0 descend to

L-packets �(⇧, V ) and �(⇧0, V 0) of automorphic representations of uni-
tary groups U(V ) and U(V 0) whenever V and V 0 are hermitian spaces
over F of dimension n and n � 1, respectively. These packets may be
empty for certain pairs (V, V 0), depending on local conditions, but the
descent is always non-trivial to the quasi-split unitary groups. (For
this and similar claims, see [22] and, more generally, [25] and [21].)
We assume �(⇧, V ) and �(⇧0, V 0) are packets of cuspidal automorphic
representations. The packets are stable provided the original represen-
tations ⇧ and ⇧0 are cuspidal; this will usually be assumed as well. In
general, for each place v of F+ there are local packets �

v

(⇧, V ) and
�

v

(⇧0, V 0) such that

�(⇧, V ) ⇢
Y

v

�
v

(⇧, V );�(⇧0, V 0) ⇢
Y

v

�
v

(⇧0, V 0)

with equality if the packets are stable.
The Ichino-Ikeda conjecture, in the version for unitary groups due to

N. Harris, expresses the central value L(12 ,⇧⇥⇧0) of the Rankin-Selberg
tensor product in terms of period integrals of forms in �(⇧, V ) ⇥
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�(⇧0, V 0). Fix a pair (V, V 0); we assume V 0 embeds as a non-degenerate
hermitian subspace of V , so that G0 = U(V 0) is naturally a subgroup
of G = U(V ). Let A0(V ) and A0(V 0) denote the spaces of cusp forms
on G = U(V ) and G0 = U(V 0), respectively. Define

L
can

(f, f 0) =

Z

G

0(F+)\G0(A)

f(g0)f 0(g0)dg0, f 2 A0(V ), f 0 2 A0(V
0)

where dg0 is Tamagawa measure. Fix (⇡, ⇡0) 2 �(⇧, V ) ⇥ �(⇧0, V 0),
and let f 2 ⇡, f 0 2 ⇡0 be factorizable functions: f = ⌦0

v

f
v

, f 0 =
⌦0

v

f 0
v

, relative to isomorphisms ⇡
⇠�! ⌦0

v

⇡
v

, ⇡0 ⇠�! ⌦0
v

⇡0
v

. The precise
formula is

(1.1)
|L

can

(f, f 0)|2
||f ||22||f 0||22

= 2��C0�
S

U(n)

Y

v2S

Z
v

(f
v

, f 0
v

)P S(
1

2
, ⇡, ⇡0)

where L
can

(•, •0) is the period integral, || • ||2 is the L2 norm (on
G(F+)\G(A) or G0(F+)\G0(A), relative to Tamagawa measure), and
the ratio of partial L-functions

P S(s, ⇡, ⇡0) =
LS(s,⇧⇥ ⇧0)

LS(s+ 1
2 , ⇡, Ad)L

S(s+ 1
2 , ⇡

0, Ad)

is the main term. Here

• � is an integer determined by the size of the L-packet �(⇧, V )⇥
�(⇧0, V 0);

• S is a finite set of places including archimedean places and
primes where either ⇡

v

or ⇡0
v

is ramified;
• the superscript S refers to partial L-functions;
• C0 is an elementary constant (a quotient of volumes which can
be taken in Q⇥);

• �S

U(n) = ↵⇡m, ↵ 2 Q,m 2 Z (a product of special values of
partial abelian L-functions, also interpreted as the L-function
of the Gross motive attached to G),

• each Z
v

(f
v

, f 0
v

) = I(fv ,f 0
v)

|fv |2v |f 0
v |2v

is a normalized local zeta integral,

where I(f
v

, f 0
v

) is the unnormalized local zeta integral defined
as follows:

(1.2) I(f
v

, f 0
v

) =

Z

G

0(F+
v )

c(f
v

)(g0
v

)c(f 0
v

)(g0
v

)dg0
v

with

(1.3) c(f
v

)(g) =< ⇡
v

(g
v

)f
v

, f
v

>
v

; c(f 0
v

)(g0
v

) =< ⇡0
v

(g0
v

)f 0
v

, f 0
v

>
v

.

Here the pairings in (1.3) are invariant hermitian forms on ⇡
v

and ⇡0
v

, respectively, with the property that the L2 pairings on



p-ADIC AND ANALYTIC PROPERTIES OF PERIOD INTEGRALS AND VALUES OF L-FUNCTIONS3

⇡ and ⇡0, respectively, factor
(1.4)

< f1, f2 >2= Q(⇡)
Y

v

< f1,v, f2,v >v

; < f 0
1, f

0
2 >2= Q(⇡0)

Y

v

< f 0
1,v, f

0
2,v >v

whenever f
i

= ⌦0
v

f
i,v

, f 0
j

= ⌦0
v

f 0
j,v

, i, j = 1, 2, with respect to
the factorizations of ⇡ and ⇡0 chosen above, and with constants
Q(⇡) and Q(⇡0) to be specified below. Moreover, the denomina-
tors |f

v

|2
v

, |f 0
v

|2
v

of the normalized local zeta integrals are defined
by

(1.5) |f
v

|2
v

=< f
v

, f
v

>
v

; |f 0
v

|2
v

=< f 0
v

, f 0
v

>
v

.

• L(⇤, ⇤, Ad) is the Langlands L-function attached to the adjoint
representation of the L-group of G or G0.

See [36, 37] for the most complete results on this conjecture to date.
The local Gan-Gross-Prasad conjectures for unitary groups, proved

(at finite places) by R. Beuzart-Plessis, implies that the left-hand side of
(1.1) vanishes for local reasons except for at most one pair V 0 ⇢ V and
one (⇡, ⇡0). More precisely, for each v 2 S, there is a unique pair of local
hermitian spaces V 0

v

⇢ V
v

and a unique ⇡
v

⇥⇡0
v

2 �
v

(⇧, V
v

)⇥�
v

(⇧0, V 0
v

)
such that

(1.6) Hom
U(V 0

v)(⇡v

⇥ ⇡0
v

,C) 6= 0.

We assume the pair (⇧,⇧0) is coherent in the sense that there are
global hermitian spaces V and V 0 with the given localizations. We
assume we have chosen V, V 0 and consider a family of pairs (⇡, ⇡0)
compatible with this choice, and (f, f 0) 2 ⇡⇥⇡0. Here we use the word
“family” alternatively as it is understood in the setting of analytic
number theory, (see for example [31, 32]) or in the sense of p-adic
analytic families. Then (1.1) translates (complex or p-adic) analytic
properties of the periods into analogous properties of the special values,
and vice versa. The present paper contains no new results; its purpose
is rather to review a number of standard conjectures on these properties
in the light of the formula (1.1).

It is a pleasure to dedicate this paper to Glenn Stevens, who nar-
rowly escaped being my roommate when we were graduate students at
Harvard. I thank the organizers of the Glenn Stevens conference for
inviting me to contribute to this volume and Akshay Venkatesh, Peter
Sarnak, Haruzo Hida, Eric Urban, and Chris Skinner for helping me to
make the questions and expectations approximately sensible; any re-
maining nonsense is mine alone. I especially thank Ariane Mézard for
refusing to allow me to cancel my lecture at the Fontaine conference in
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2010, after I learned that my intended topic had become obsolete, and
in this way forcing me to think about the topic of the present note.

2. Complex-analytic variation

Let (V, V 0), (⇡, ⇡0) be as in the previous section. Imitating the
terminology of Gan and Ichino, we say the representation ⇧ ⇥ ⇧0 of
GL(n) ⇥ GL(n � 1) is the last name of the representation ⇡ ⇥ ⇡0 of
G⇥G0. The pair (V, V 0), together with the finite set S of places and,
for each v 2 S, the unique ⇡

v

⇥ ⇡0
v

– taken up to inertial equiva-
lence – satisfying (1.6), comprise the first name of ⇡ ⇥ ⇡0. Here if v is
non-archimedean, we say two representations are inertially equivalent
if they belong to the same Bernstein component; this means, roughly,
that the semisimplifications of the associated local Langlands parame-
ters are equivalent on inertia. If v is archimedean, ⇡

v

and ⇡0
v

are in the
discrete series and inertial equivalence is taken to mean isomorphism.
In particular, two representations can have the same first names but
di↵erent last names; a given last name designates an L-packet and the
first names distinguish the di↵erent members of the L-packet (some
items in the first name are redundant). If T ⇢ S then one obtains the
first name at T by ignoring the data at v 2 S \ T .

The hypotheses imply that the completed L-functions (including
archimedean terms) satisfy a functional equation

(2.1) L(s,⇧⇥ ⇧0) = "(s,⇧⇥ ⇧0)L(1� s,⇧⇥ ⇧0)

where the sign "(12 ,⇧ ⇥ ⇧0) = ±1. The coherence assumption implies
that the sign is in fact +1. This property is determined by the first
name of ⇧⇥⇧0. Here is a vague expectation, inspired by a well-known
conjecture of Goldfeld on twists of elliptic curves.

Expectation 2.2. (a) Let T ( S be a proper subset. Let F = (V 0 ⇢
V ; {⇡

v

⇥ ⇡0
v

}) be a first name satisfying the coherence assumption, F
T

the restriction of F to T . Then (in a sense to be made more precise
in Expectation 2.7 below) almost all ⇧ ⇥ ⇧0 with first name F 0 � F

T

satisfying the coherence assumption have the property that

(2.3) L(
1

2
,⇧⇥ ⇧0) 6= 0.

(b) Moreover, for fixed ⇧ with first name (V, {⇡
v

}, v 2 S), almost
all ⇧0 with first name (V 0, {⇡0

v

}, v 2 S) have the property (2.3), and
likewise if the roles of V and V 0 are reversed.

(c) Point (b) remains true when ⇧0 runs over cohomological auto-
morphic representations of GL(r) for any r  n� 1.
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Remark 2.4. I repeat that in equidistribution questions like this one,
the first name can be specified only up to inertial equivalence.

Remark 2.5. One can ask for a weaker version of points (b) and (c)
of Expectation 2.2: for given ⇧ there is at least one ⇧0 satisfying (2.3).
When r = n�1 a number of results of this kind are known, for example
[9, 17]. For r < n � 1 it is considered extremely di�cult even to find
one ⇧0.

The vagueness is in the expression “almost all.” The indicated collec-
tion C(⇧S\T ⇥⇧0,S\T ) of ⇧⇥⇧0 with first name specified at S \T is an
example of a family; it is infinite because no restriction has been made
at S \ T , except the coherence assumption. Analytic number theorists
define height functions h(⇧ ⇥ ⇧0) =

Q
v2S\T h

v

(⇧
v

⇥ ⇧0
v

) on families
of this kind. The local height h

v

measures the size of the infinitesimal
character if v is archimedean and the Artin conductor of ⇧

v

⇥ ⇧0
v

if
v is non-archimedean. See for example the definition of the Iwaniec-
Sarnak analytic conductor in [35], 2.12.2, or the discussion on p. 728
of [23]; however, we will be loose about the exponent in order to allow
for qualitative statements. The first important property is

(2.6) |{⇧⇥ ⇧0 ⇢ C(⇧S\T ⇥ ⇧0,S\T ), h(⇧⇥ ⇧0) < N}| < 1, 8N > 0.

Denote by C(⇧S\T ⇥⇧0,S\T )
<N

the set on the left-hand side of (2.6),
and let C(⇧S\T⇥⇧0,S\T ) 6=0

<N

the subset of ⇧⇥⇧0 such that L(12 ,⇧⇥⇧0) 6=
0. In view of (2.6), Expectation 2.2 can be made quantitative:

Expectation 2.7. Under the hypotheses of Expectation 2.2, one has

(2.8) lim
N ! 1

|C(⇧S\T ⇥ ⇧0,S\T ) 6=0
<N

|
|C(⇧S\T ⇥ ⇧0,S\T )

<N

| = 1.

Assuming the validity of Conjecture (1.1), Expectation 2.8 can be
seen as a statement about the equidistribution of the spectrum of G⇥
G0 relative to the diagonal cycle G0(F+)\G0(A) ⇢ G0(F+)\G0(A) ⇥
G(F+)\G(A). A di↵erent kind of equidistribution result concerns the
growth of the central value L(12 ,⇧⇥⇧0) as ⇧⇥⇧0 varies over C(⇧S\T ⇥
⇧0,S\T ) 6=0

<N

(which is e↵ectively the same as variation over C(⇧S\T ⇥
⇧0,S\T )

<N

under Expectation 2.8). We assume the height h(⇧ ⇥ ⇧0)
factors as h(⇧)h(⇧0), with each factor satisfying the analogue of (2.6).
We assume h(⇧⇥ ⇧0) has been normalized in such a way that

(2.9) |L(1
2
,⇧⇥ ⇧0)| <<

C(⇧S\T⇥⇧0,S\T ) h(⇧⇥ ⇧0)
1
2

is the convexity bound on central values, obtained by any means neces-
sary (the Rankin-Selberg integral, or the Langlands-Shahidi method),
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where the implied constant depends on the family C(⇧S\T ⇥ ⇧0,S\T ).
Then the relevant generalized Lindelöf Hypothesis would be

Conjecture 2.10. For any " > 0 one has

|L(1
2
,⇧⇥ ⇧0)| <<

C(⇧S\T⇥⇧0,S\T
,") h(⇧⇥ ⇧0)"

where the implied constant depends on the family and on ".

Subconvexity in this setting would be any result of the form

(2.11) |L(1
2
,⇧⇥ ⇧0)| <<

C(⇧S\T⇥⇧0,S\T ) h(⇧⇥ ⇧0)
1
2�"0

for some fixed "0 > 0.
I learned the following expectation from Venkatesh; I don’t know

whether or not it has a name:

Expectation 2.12.

(2.13) |L(1, ⇡, Ad)| ⇣
C(⇧S\T ) h(⇧)

"; |L(1, ⇡0, Ad)| ⇣
C(⇧0,S\T ) h(⇧

0)"

Note that L(s, ⇡, Ad) = L(s,⇧, As±) is an Asai L-function attached
to ⇧, with sign depending on the parity of n. Thus (2.12) is actually a
bound for L-functions of GL(n) and GL(n� 1). The upper bounds

|L(1, ⇡, Ad)| <<
C(⇧S\T ) h(⇧)

"; |L(1, ⇡0, Ad)| <<
C(⇧0,S\T ) h(⇧

0)"

thus probably follow (as Venkatesh has explained) from Theorem 2 of
X. Li in [23]; however, I have not checked that the Asai L-functions
satisfy all the properties required for that proof. The lower bounds are
also expected; see [26], where they are proved in some cases assuming
the non-existence of Siegel zeroes.

Subconvexity is an equidistribution statement for the absolute values
of the periods L

can

(f, f 0) in (1.1), as f and f 0 vary over norm 1 vectors.
The size of the periods depends both on the ratio of L-values and on
the absolute values of the local zeta integrals, and in principle one can
separate the e↵ect of varying f and f 0 over vectors in a fixed ⇡ ⇥ ⇡0

from the e↵ect of varying ⇧⇥ ⇧0 in a family.
In particular, if you are willing to grant Expectation 2.12 and the

Lindelöf Hypothesis 2.10, then the Ichino-Ikeda conjecture implies that
the growth of the periods is purely local:

(2.14) |L
can

(f, f 0)|2 = O(|
Y

v2S

Z
v

(f
v

, f 0
v

)|)

when f and f 0 vary over unit vectors in ⇡ and ⇡0.
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This is mentioned only in order to motivate the p-adic analogue.
The (generalized) Lindelöf Hypothesis is widely believed because it is
an immediate consequence of the (generalized) Riemann Hypothesis.
However, any evidence in favor of the Lindelöf Hypothesis is consid-
ered precious. The article [35] of Venkatesh obtain bounds on periods,
generally much weaker than 2.14, and uses them to prove subconvexity
and other equidistribution applications in a number of settings.

3. Rationality properties

Under our hypotheses, each representation ⇡ 2 �(⇧, V ) (resp. ⇡0 2
�(⇧0, V 0)) contributes non-trivially to the cohomology of an automor-
phic vector bundle (coherent sheaf) on the Shimura variety attached to
G (resp. G0). More precisely, the Shimura varieties are attached to the
groups G+, G0,+ of similitudes of V and V 0, respectively, with rational
similitude factor, and one needs to extend ⇡ and ⇡0 to automorphic
representations G⇡ and G⇡0 of G+ and G0,+. This has to be done in
a way that is compatible with the structure of the automorphic vector
bundles and the central characters of G⇡ and G⇡0 have to be chosen so
that the period integral L

can

extends. Details can be found in [15], es-
pecially in section 5.1, where it is explained that the period invariants
introduced below have only a mild dependence on these supplemen-
tary choices (see below). See [15] as well for all claims (and disclaimers
1) regarding the rational structures on ⇡ and ⇡0 defined by coherent
cohomology.

Suppose now we have chosen f and f 0 as in (1.1) to be vectors in ⇡
and ⇡0, respectively, that are rational over a number field L relative to
the rational structure defined by coherent cohomology. (We recall that
the identification of an automorphic form with a coherent cohomol-
ogy class depends on a notion of trivialization of automorphic vector
bundles at CM points, and the theory in [15] is worked out relative
to a fixed conjugacy class of CM points. We gloss over this point in
what follows.) Let P (⇡, ⇡0) and P (⇡_, ⇡0,_) (resp. Q(⇡), Q(⇡0)) be the
Gross-Prasad periods (resp. normalized Petersson norms) defined in
Definition 5.15 (resp. formula (3.13)) of [15]. These are elements of
E(⇡)⌦E(⇡0)⌦C, where E(⇡) and E(⇡0) are number fields that play the
role of coe�cient fields of ⇡ and ⇡0 and associated motives M(⇡) and
M(⇡0). Thus If f and f 0 are defined over L � E(⇡) · E(⇡0) as above,
then P (⇡, ⇡0)�1L

can

(f, f)0, P (⇡_, ⇡0,_)L
can

(f, f 0), Q(⇡)�1||f, f ||2, and

1For example, the assumption that the Gross-Prasad period invariants are de-
fined correctly depends in general on the hypothesis that local archimedean pairings
extend continuously to the Fréchet completions of moderate growth.
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Q(⇡0)�1||f 0, f 0||2, all belong to L. Moreover, these quotients all trans-
form in an appropriate way under Gal(Q/Q), so that the expression
on the left hand side of (1.1) is an E(⇡)⌦ E(⇡0)-multiple of

(3.1) P(⇡, ⇡0) :=
P (⇡, ⇡0)P (⇡_, ⇡0,_)

Q(⇡)Q(⇡0)
.

(There is a misprint in formula (5.10) of [15]; the factor P (⇡_, ⇡0,_) was
omitted.)

The constants Q(⇡) and Q(⇡0) were already seen in (1.4).
The following conjecture is a consequence of the Tate conjecture,

applied to an appropriate theory of motives:

Conjecture 3.2. (a) Up to E(⇡)⇥-multiples, the invariant Q(⇡) de-
pends only on ⇧

f

and the archimedean part of the first name of ⇡.
(Likewise for Q(⇡0).)

(b) Up to E(⇡) ·E(⇡0)-multiples, the invariant P (⇡, ⇡0) depends only
on ⇧

f

⇥ ⇧0
f

and the archimedean part of the first names of ⇡ and ⇡0.

In particular, the invariants do not depend on the inner forms of
G and G0 at finite places, nor on the first names of ⇡ and ⇡0 at finite
places. It follows that the set of invariants of the form Q(⇡) attached to
a given ⇧ has 2dn members, corresponding to the number of elements
in the union of the local discrete series L-packets at the archimedean
places of F+; however, when n is even, up to half of these invariants
may not be realized globally because of a global sign obstruction. (In
that case Yoshida has shown how to construct alternative invariants by
using quadratic base change.)

Conjecture 3.2 is a consequence of Conjecture 3.3.10 of [19], a much
more general conjecture on the multiplicative relations among the vari-
ous Q(⇡), which is also implied by the Tate conjecture. Conjecture 3.2
for holomorphic discrete series has been established in most cases by
using relations of the Q(⇡) to critical values of L-functions (for exam-
ple, see Corollary 3.5.12 of [13]). As hinted above, the actual Petersson
norms of arithmetically normalized forms depend on the central char-
acter of the extension of ⇡ to a representation G⇡ of the similitude
group G+. This annoying feature of the theory must be taken into
account in formulating conjectures carefuly, as in Conjecture 3.3.10 of
[19], but we will disregard it and assume our G⇡ and G⇡0 have been
chosen consistently.

The main terms on the right-hand side of (1.1) are critical values of
motivic L-functions, and are therefore conjecturally algebraic multiples
of the period invariants defined by Deligne in [4]. We write M(⇧) and
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M(⇧0) for the hypothetical motives over F , of rank n and n�1, respec-
tively, over their respective coe�cient fields E(⇧) and E(⇧0), attached
to ⇧ and ⇧0. Here one expects E(⇧) to be the field of definition of
the finite part of the automorphic representation ⇧, and likewise for
E(⇧0), but this is all hypothetical in general. With the usual normal-
ization, M(⇧) and M(⇧0) are of weights n� 1 and n� 2, respectively.
We write c(12 ,⇧ ⇥ ⇧0) for the Deligne period attached to the special
value L(12 ,⇧ ⇥ ⇧0), which equals L(n � 1,M(⇧) ⌦ M(⇧0)), a critical
value of the motivic L-function (viewed by restriction of scalars to Q).
Similarly, we write c(1,⇧, Ad) and c(1,⇧0, Ad) for the Deligne peri-
ods attached to the special values L(1, ⇡, Ad) and L(1, ⇡0, Ad); this is
an abuse of notation because the L-functions are attached to the ad-
joint representations of the L-groups of G and G0, and not of GL(n),
GL(n � 1); however, the L-functions do only depend on ⇧ and ⇧0.
Deligne’s conjecture is

Conjecture 3.3. Deligne Let E(⇧), E(⇧0), and E(⇧,⇧0) denote the
coe�cient fields of the restrictions of scalars from F to Q of M(⇧),
M(⇧0), and M(⇧)⌦M(⇧0), respectively. Then as elements of E(⇧,⇧0)⌦
C, resp. E(⇧)⌦ C, resp. E(⇧0)⌦ C, we have

L(
1

2
,⇧⇥ ⇧0) ⇠ c(

1

2
,⇧⇥ ⇧0)

L(1, ⇡, Ad) ⇠ c(1,⇧, Ad)

L(1, ⇡0, Ad) ⇠ c(1,⇧0, Ad)

where the notation ⇠ means, respectively, up to scalar multiples in
E(⇧,⇧0), E(⇧), and E(⇧0).

This conjecture is predicated on a valid theory of motives for auto-
morphic representations. To verify the conjecture in the automorphic
setting, one invokes the following principle:

Principle 3.4. The Deligne periods c(12 ,⇧⇥⇧0), c(1,⇧, Ad), and c(1,⇧0, Ad)
can all be expressed, up to factors in the relevant coe�cient fields, as
products of periods of the form Q(⇡) and Q(⇡0) and of periods of abelian
motives, as ⇡ and ⇡0 vary over the packets �(⇧, V ) and �(⇧0, V 0) for
various hermitian spaces V and V 0.

In fact, the multiplicative relations among the periods Q(⇡) for vary-
ing ⇡ imply that the Deligne periods can be written in many ways as
products of these normalized Petersson norms. Assuming a reasonable
theory of motives, the article [16] gives precise conjectural versions of
Principle 3.4 when F is an imaginary quadratic field. More general
(hypothetical) factorizations are worked out in section 4 of [11], and
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versions of these relations are proved in many cases in [11], [12], and
[24]

A precise conjectural relation among the period invariants appear-
ing on the left-hand and right-hand sides of (1.1) is given in Conjec-
ture 5.16 of [15] (with the left-hand side correctly defined as in (3.1)
above). In what follows, we will want to view algebraic numbers such as
P (⇡, ⇡0)�1L

can

(f, f) as elements of p-adic fields (or integer rings), and
to relate p-adic properties of these algebraic numbers to p-adic prop-
erties of the algebraic parts of the special values of L-functions on the
right-hand side of (1.1). One di�culty is that the period invariants in
the numerators and denominators of the two sides do not correspond.
For example, one can often interpret L

can

(•, •) as a cohomological cup
product (cf. [17]). In these cases the Gross-Prasad periods P (⇡, ⇡0)
and P (⇡_, ⇡0,_) can be normalized to equal 1, but the critical value
L(12 ,⇧⇥ ⇧0) is conjecturally never an algebraic number.

4. p-adic analytic variation

The theme of this section is that the structure of the Ichino-Ikeda
conjecture appears to be tailor-made for interpolation in p-adic fam-
ilies. The presence of the adjoint L-function in the denominator is
consistent with the appearance of (elements of) congruence modules in
Hida’s definitions of p-adic L-functions in Hida families. Moreover, the
presence of the adjoint L-function on the right-hand side of 1.1 is the
natural counterpart of the presence of the norm on the denominator of
the right-hand side. However, both sides of the conjecture need to be
replaced by algebraic numbers before we can consider their algebraic
variation.

In what follows we assume all the Deligne periods c(12 ,⇧ ⇥ ⇧0),
c(1,⇧, Ad), c(1,⇧0, Ad), as well as Q(⇡) and Q(⇡0), to be normalized
up to p-adic units. This is at least reasonable when the motives M(⇧)
and M(⇧0) are ordinary at primes dividing p. In the ordinary case we
also assume the invariants can be normalized consistently, up to p-adic
units in an ordinary (Hida) family containing an integral ordinary vec-
tor in ⇡. We assume the relations postulated in Principle 3.4 are valid
up to p-adic units.

With our normalized periods, we let

L̃S(
1

2
,⇧⇥ ⇧0) =

LS(12 ,⇧⇥ ⇧0)

c(12 ,⇧⇥ ⇧0)

and define L̃S(1, ⇡, Ad), L̃S(1, ⇡0, Ad), Q̃(⇡), and Q̃(⇡0) analogously.
These are all algebraic numbers. It is well-known that �S

U(n) is an
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algebraic multiple of (2⇡i)a(U(n)) for a certain integer a(U(n)); we de-
fine �̃S

U(n) = (2⇡i)�a(U(n))�S

U(n) We also define L̃
can

(f, f 0) by dividing
L
can

(f, f 0) by a an appropriately normalized P (⇡, ⇡0), so that (1.1) be-
comes an identity of algebraic numbers when the quantities are replaced
by their versions with .̃

Remark 4.1. The computations in [16] of the Deligne periods in terms
of the invariants Q(⇡) make use of hermitian pairings on the coho-
mological realizations of the motives, and the multiplicative relations
among the various Q(⇡) are based on identifying the automorphic re-
alizations of the motives with exterior powers of one another. As long
as p > n � 2, these identifications should all make sense p-integrally.

In this section we always assume p > 2.

4.1. The adjoint L-functions. We begin by considering the denom-
inator of the left-hand side. The value at s = 1 of L(s, ⇡, Ad) is critical
and is therefore conjecturally an algebraic multiple of the corresponding
Deligne period. (Automorphic versions of this conjecture are proved in
many cases in [11, 12].) I would like to say that the Bloch-Kato con-
jecture expresses the quotient of L(1, ⇡, Ad) by the Deligne period in
terms of orders of Galois cohomology groups. Obviously matters can’t
be so simple, because the Deligne period is only defined up to a scalar
factor in the coe�cient field, and there are additional complications
when the coe�cient field is not rational.

We take as a model the results of [5, 6] for elliptic and Hilbert mod-
ular forms. Let ⌧ be a cohomological automorphic representation of
GL(2)

F

+ attached to a Hilbert modular form, all of whose weights
have the same parity. Let S(⌧) be the set of finite primes at which ⌧
is ramified. Let ⇢

⌧

: Gal(Q/F+) ! GL(2,O) denote the p-adic Galois
representation attached to ⌧ , where O is the p-adic integer ring gener-
ated by the Fourier coe�cients of a a newform in ⌧ ; let k be the residue
field of O, and let ⇢̄

⌧

: Gal(Q/F+) ! GL(2, k) be the residual repre-
sentation of ⇢

⌧

. Let Ad0(⇢
⌧

) denote the adjoint action of Gal(Q/F+)
on the trace zero subspace of End(⇢

⌧

). We define ⇤(s, Ad0(⇢
⌧

)) to be
the completed L-function of Ad0(⇢

⌧

) (including �-factors). Here is a
rough version of Dimitrov’s statement; as far as I know the hypotheses
have not been relaxed. A precise statement can be found in [6].

Theorem 4.2. (Dimitrov) Let p /2 S(⌧) be a prime unramified in F+.
Assume

(a) p is su�ciently large relative to the archimedean component ⌧1
of ⌧ .
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(b) the image of ⇢̄
⌧

is su�ciently large (condition (LI
Ind(⇢)) in [6]).

There is an ideal Tam(Ad0(⇢
⌧

)) ⇢ O, depending only on the local
factors of ⌧ at primes in S(⌧), and a normalized period c(1, ⌧, Ad0) 2
C⇥, such that
(4.3)

Tam(Ad0(⇢
⌧

))Fitt(H1
f

(F+, Ad0(⇢
⌧

))⌦Q
p

/Z
p

) = ◆
p

(
⇤(1, Ad0(⇢

⌧

))

c(1, ⌧, Ad0)
)O.

Here ◆
p

is a chosen embedding of Q in Q
p

, H1
f

is the Bloch-Kato Selmer
group, and Fitt denotes the Fitting ideal.

Now assume ⇡ is an automorphic representation of the unitary group
G, defined over a number field E = E(⇡), which we view as a subfield
of C. Fix a prime w of E dividing p and let O

E,w

⇢ E be the ring
of integers, localized at w; let O be the w-adic completion of O

E,w

.
Let S = S(⇡) denote the set of places of F+ at which either ⇡ or
the group G is ramified. The generalization of the right hand side of
(4.3) is the ideal generated by the p-adic realization of L̃S(1, ⇡, Ad),
which is one of the factors in the denominator of the right-hand side
of 1.1. The left-hand side of (4.3) should similarly be related to the
corresponding factor of the denominator of the left-hand side of 1.1,
namely the factor Q(⇡)�1||f ||22 = Q(⇡)�1 < f, f >, where Q(⇡) is the
p-integral invariant introduced above and f is an integral generator of
the module of coherent cohomological forms in ⇡ of some optimal level.

One doesn’t really know how to optimize the level in general, but it
is reasonable to interpret the quotient Q(⇡)�1 < f, f > as a genera-
tor of a congruence ideal. More precisely, let T

⇡

denote the localized
Hecke algebra, that appears in the Taylor-Wiles method and its gen-
eralizations, specifically the generalization to coherent cohomology in
[14]. This is a finite O-algebra, acting on a (localized) O-module M

⇡

of coherent cohomology on the Shimura variety attached to G. We let
M

⇡,w

⇢ M
⇡

be the O
E,w

-module of E-rational forms contained in M
⇡

(in other words, the coherent cohomology of a model over O
E,w

). The
localization has the e↵ect that

(4.4) M
⇡

⌦Q
p

⇠�! �
⇡

0⌘⇡

V (⇡0)

where ⇡0 runs through automorphic representations of G contributing
to the same coherent cohomology space as ⇡, the relation ⌘ denotes
congruence (of the corresponding Galois representations) modulo the
maximal ideal of O, and V (⇡0) is the subspace of (rational) coherent
cohomology cut out by the Hecke eigenvalues of ⇡0. Let �

⇡

: T
⇡

! O
be the character of the Hecke algebra on forms in V (⇡), I

⇡

= ker�
⇡

,
J
⇡

= AnnT⇡(J⇡) ⇢ T
⇡

and and C(⇡) = �
⇡

(J
⇡

) the congruence ideal.
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In order to continue, it is reasonable to make the following hypothe-
ses:

Hypothesis 4.5. Suppose p /2 S and G(F+
v

) is quasi split for every
place v 2 S. Then

(i) There is an invariant complex-valued inner product <,> on
M

⇡,w

with respect to which the action of T
⇡

is hermitian, and
Q(⇡) can be taken to be the free O

E,w

-submodule of C generated
by < f, g > where f belongs to an O

E,w

-basis of M
⇡,w

\ V (⇡)
and g runs over M

⇡,w

.
(ii) C(⇡) = Q(⇡)�1 < f, f > O if f belongs to an O-basis of M

⇡

\
V (⇡).

(iii) C(⇡) = Fitt(H1
f

(F+, Ad0(⇢
⌧

))⌦Q
p

/Z
p

).

If we don’t assume that G(F+
v

) is quasi split at ramified primes,
then the module M

⇡,w

may be missing level-lowering congruences –
there may be a congruence between the p-adic Galois representation
attached to the base change ⇧ of ⇡ and that attached to some ⇧1 that
is less ramified than ⇧ at places dividing S, but there may be local
obstructions at places in S to descending ⇧1 to G. In that case, the
Petersson norm of an integral generator of the ⇡-isotypic component
of M

⇡

may not be su�ciently divisible by p; see [30] for a well-known
example. (I thank Chris Skinner for reminding me of this possibility.)
Point (iii) of Hypothesis 4.5 is the sort of thing that can be derived from
the Taylor-Wiles method as a consequence of an identity of the form
R

⇡

⇠�! T
⇡

, where R
⇡

is the deformation ring of the Galois representa-
tion attached to ⇡. When the Taylor-Wiles method applies, it implies
that T

⇡

is a complete intersection and that M
⇡

is free over T
⇡

; this im-
plies Point (i). When n > 2, one only knows how to prove R

⇡

⇠�! T
⇡

theorems in minimal level; in the setting of coherent cohomology, this
is proved in [14], for the moment under fairly restrictive hypotheses.
Nevertheless, it seems fair to admit this for heuristic purposes.

Equation (4.3) also incorporates the �-factors as well as local Tama-
gawa factors. Now we draw the lesson for the L-function L(s, ⇡, Ad) =
L(s, Ad(⇢

p,⇡

)), where ⇢
p,⇡

is the p-adic representation of Gal(Q/F ) at-
tached to⇧ and whereAd(⇢

p,⇡

) is the p-adic representation ofGal(Q/F+)
(note that F has been replaced by F+) on the Lie algebra of End(⇢

p,⇡

).
Assuming Dimitrov’s theorem generalizes to automorphic representa-
tions of unitary groups for which Hypothesis 4.5 is valid, it is reason-
able to expect the following version of the Bloch-Kato conjecture for
the adjoint motive attached to ⇧:
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Expectation 4.6. Let ⇡ 2 �(⇧, V ). Let S(⇡) be the set of finite places
of F at which ⇡ is ramified. Let p /2 S(⇡) be a prime unramified in F .
Assume

(a) p is su�ciently large relative to the archimedean component ⇡1
of ⇡.

(b) the residual image of ⇢
p,⇡

is su�ciently large.

There is an ideal Tam(Ad(⇢
p,⇡

)) ⇢ O, depending only on the local
factors of ⇡ at primes in S(⇡), and a normalized period c⇤(1, ⇡, Ad) 2
C⇥, such that
(4.7)

Tam(Ad(⇢
p,⇡

))Fitt(H1
f

(F+, Ad(⇢
p,⇡

))⌦Q
p

/Z
p

) = ◆
p

(
⇤(1, Ad(⇢

p,⇡

))

c⇤(1, ⇡, Ad)
)O.

Here c⇤(1, ⇡, Ad) is a version of the hypothetical c(1, ⇡, Ad) intro-
duced above, modified to account for the �-factors. Write ⇤̃(1, Ad(⇢

p,⇡

)) =
⇤(1,Ad(⇢p,⇡))
c

⇤(1,⇡,Ad) . Combining Expectation 4.6 with Hypothesis 4.5, we ob-
tain the following expression for the denominator of the Ichino-Ikeda
conjecture.

(4.8) Tam(Ad(⇢
p,⇡

))Q̃(⇡)O = ⇤̃(1, Ad(⇢
p,⇡

))O.

Here we are assuming Q̃(⇡) generates the congruence ideal C(⇡).
The next question is the following:

Question 4.9. (1) Can one actually expect an identity of algebraic
numbers:

(4.10) Tam(Ad(⇢
p,⇡

))Q̃(⇡) = ⇤̃(1, Ad(⇢
p,⇡

))?

(2) As ⇡ varies in a p-adic family, do the expressions (4.10), suitably
p-stabilized, p-adically interpolate into an identity of analytic
functions of ⇡?

By “p-stabilized” I mean, here and below, that the local factors at
p and at 1 have been modified according to the recipe provided by
Coates in [2] for L-functions of motives that are ordinary at p, or more
generally by Perrin-Riou and others. The content of Question 4.9 (2)
corresponds to the conjecture first formulated by Greenberg in [10] as
a general framework for Hida’s construction of p-adic L-functions for
ordinary families. In view of Expectation 4.6, Question 4.9 (2) is a
version of the Main Conjecture of Iwasawa theory, at least for families
satisfying Panchishkin’s condition on p-adic valuations of Frobenius
eigenvalues [28], and was again formulated in [10]. The factorization of
the left-hand side has the following meaning: if the p-adic L-function on
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the right hand side of (1) is meant to measure all congruences between
⇡ and other automorphic forms, the term Tam on the left accounts
for level-raising congruences at S, while the term Q̃(⇡) accounts for
congruences without changing the level. As mentioned above, the for-
mulation has to be modified if level-lowering is impossible on the group
G for local reasons.

For n = 2, a version of this question was answered in the a�rmative
in an unpublished paper [34] of Eric Urban (in many cases); ⇡ is allowed
to vary in a Hida family, and the L-function is twisted by cyclotomic
Dirichlet characters.

4.2. Local zeta integrals. Let v be a finite prime in S, not dividing
p. Write G

v

= G(F+
v

), G0
v

= G(F+
v

). Although it has not been proved,
it seems to be generally believed that, for any f

v

2 ⇡
v

, f 0
v

2 ⇡0
v

, rational
over E(⇧

v

,⇧0
v

), there is a polynomial P (f
v

, f 0
v

, T ) 2 E(⇧,⇧0)[T ] such
that

(4.11) Z
v

(f
v

, f 0
v

) = P (f
v

, f 0
v

, q
1
2+s

v

)|
s= 1

2
· L(12 , ⇡v

⇥ ⇡0
v

)

L(1, ⇡
v

, Ad)L(1, ⇡0
v

, Ad)
.

Moreover, I would expect it to be possible to find f
v

and f 0
v

, rational
over E(⇧

v

,⇧0
v

), such that P (f
v

, f 0
v

, T ) = 1, as in the usual adelic theory
of zeta functions.

Question 4.12. Suppose ⇡
v

and ⇡0
v

have p-integral models and admit
no non-trivial p-adic deformations. Can one find integral vectors f

v

, f 0
v

such that P
v

(f
v

, f 0
v

, q
1
2+s

v

)|
s= 1

2
= 1?

The meaning of the terms in the first sentence is left deliberately
vague. Integral models are understood in the sense of [20] and p-adic
deformations are understood in the sense of [8].

I expect the answer to 4.12 to be a�rmative, and I expect ⇡
v

and
⇡0
v

to have p-integral models when ⇡ and ⇡0 are coherent cohomological
of level prime to p, or cohomological of any level. If ⇡

v

and ⇡0
v

have
(infinitesimal) p-adic deformations, there’s no reason to assume there
are integral f

v

and f 0
v

that trivialize the variable part of the local zeta
integral. In other words, as f

v

and f 0
v

run over integral vectors, the

minimal p-adic valuation def(⇡
v

, ⇡0
v

) of P
v

(f
v

, f 0
v

, q
1
2+s

v

)|
s= 1

2
may well

be positive.
Suppose S contains no prime dividing p. Define the local defect

def
loc

(⇡, ⇡0) of (⇡, ⇡0) to be the sum over v 2 S, of def(⇡
v

, ⇡0
v

). Write
val

p

for the p-adic valuation.
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Question 4.13. Suppose G
v

and G0
v

are quasi-split at all primes v 2 S,
and S contains no prime dividing p. Is val

p

(|L̃
can

(f, f 0)|2) � def
loc

(⇡, ⇡0)
for all (f, f 0) 2 ⇡ ⇥ ⇡0?

This question is meant to express the following idea – that all local
congruences between ⌦

v2S⇡v

⇥⇡0
v

and other representations of
Q

v2S Gv

are realized in the module of p-integral automorphic forms on G⇥G0.
I pose the question not because I believe the answer is necessarily
a�rmative but in order to focus attention on the relevant phenom-
ena. It may be that the answer is positive provided the images of the
corresponding Galois representations are su�ciently large, so that the
Taylor-Wiles method applies. Or it may become positive if one adds
enough auxiliary primes to S. Alternatively, it is quite likely that the
p-adic valuations of local zeta integrals are reflected in the denomina-
tors as well as the numerators of the period side of the Ichino-Ikeda
formula, and there may be no simple way to separate their contribu-
tions. I would especially expect this to be the case if one drops the
quasi-split assumption.

If ⇡ ⇥ ⇡0 is ramified at p, the p-adic local Langlands correspondence
comes into play, and I don’t know what to expect. Section 5 represents
a first attempt to address this question.

4.3. Rankin-Selberg L-functions. We continue to work in the set-
ting of the Ichino-Ikeda conjecture; in particular, the pair (⇡, ⇡0) is
assumed to have a base change to a coherent pair (⇧,⇧0) and satisfies
the local Gan-Gross-Prasad constraints 1.6. In particular, the global
sign of the functional equation is always +1.

Assuming we can relate the denominators of the two sides of (1.1)
as in (4.8), or even (4.10), applied to ⇧0 as well as to ⇧, we derive the
consequences for the numerator. The term Tam(Ad(⇢

p,⇡

)) is a product
of factors at primes in S(⇡) (including archimedean primes), so it is
appropriate to define

ZTam,S(⇡, ⇡0; f, f 0) = Tam(Ad(⇢
p,⇡

))�1
Y

v2S

Z
v

(f
v

, f 0
v

);

as before, this definition depends on the chosen factorizations ⇡
⇠�! ⌦0

v

⇡
v

, ⇡0 ⇠�! ⌦0
v

⇡0
v

. The Ichino-Ikeda formula then implies, under (4.8),
and assuming p > 2,

(4.14) C0�̃
S

U(n)Z̃
Tam,S(⇡, ⇡0; f, f 0)L̃S(

1

2
,⇧⇥ ⇧0)O = |L̃

can

(f, f 0)|2O.
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(An adjustment is needed to account for the presence of �-factors in
(4.8). This is incorporated into the archimedean factors of Z̃Tam,S. We
need not dwell on the details.)

Again, we can ask about more precise normalizations.

Question 4.15. Suppose G
v

and G0
v

are quasi-split at all primes v 2 S,
and S contains no prime dividing p.

(1) Can one actually expect an identity of algebraic numbers if the
periods are appropriately chosen:

(4.16) C0�̃
S

U(n)Z̃
Tam,S(⇡, ⇡0; f, f 0)L̃S(

1

2
,⇧⇥ ⇧0) = |L̃

can

(f, f 0)|2?
(2) As ⇡ varies in a p-adic family, with the local components of f

and f 0 fixed at primes in S, do the expressions (4.16), suitably
p-stabilized, p-adically interpolate into an identity of analytic
functions of ⇡ ⇥ ⇡0 (and the p-stabilizations)?

(3) In particular, does the central value of the p-adic L-function
factorize as the product of two p-adic analytic functions, corre-
sponding to L̃

can

(f, f 0) and its complex conjugate?

These questions are subject to the same caveats as those that fol-
lowed Question 4.13; one doesn’t really know how the local zeta inte-
grals reflect the arithmetic of the motives attached to ⇧ and ⇧0, even
under the quasi-split hypothesis.

Factorizations of p-adic L-functions as in question (3) have been
obtained in a number of situations in low dimension; see for example
[33, 27, 18, 3]. Whenever there is a factorization of the central value
of the complex L-function – references [33] and [27] use factorizations
due to Waldspurger – there is a clear route to constructing a p-adic
factorization as well. The parameters in the hypothetical factorizable
p-adic L-function are sometimes called “anticyclotomic” variables. The
following question has nothing to do with the Ichino-Ikeda conjecture.

Question 4.17. Does the factorization of the central value of the stan-
dard L-function of a unitary group in [19] admit a p-adic interpolation?

Returning to the situation of Question 4.15, we arrive at a p-adic
analogue of Question 2.2. Because the role of the local zeta integrals is
unclear, we are not even confident enough to formulate an Expectation.

Question 4.18. Suppose G
v

and G0
v

are quasi-split at all primes v 2 S,
and S contains no prime dividing p. In what follows, we assume (2)
and (3) of Question 4.15 have a�rmative answers.

(1) Suppose each of ⇡ and ⇡0 varies in a connected ordinary fam-
ily, or more generally, in a family that satisfies the Panchishkin
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condition of [28]. When can one assume the p-adic L-function
L
p

(s
cent

, ⇡⇥⇡0) to be divisible by p; i.e., to have non-trivial Iwa-
sawa µ-invariant? Here s

cent

is the central value, corresponding
to s = 1

2 in the Ichino-Ikeda conjecture.
(2) Let f and f 0 be modular forms varying over families as in (1); in

other words, we suppose f and f 0 are functions of the p-adic pa-
rameters of ⇡ and ⇡0 (so that one has picked out a vector f from
each ⇡ in the family). When can one assume the normalized
p-adic pairing L̃

can

(f, f 0) to be divisible by p?
(3) Are the answers to questions (1) and (2) determined entirely

by local considerations, and by the residual p-adic Galois rep-
resentations attached to ⇡ and ⇡0?

Question 4.18 has to do with non-vanishing modulo p of normalized
special values of L-functions. It would be nice to be able to say that the
hypothetical anticyclotomic p-adic L-function has trivial µ-invariant as
a function of an (ordinary or Panchishkin) family. Alternatively, one
can always divide by a power of p and replace L

p

(s
cent

, ⇡ ⇥ ⇡0) by an
element of an appropriate Hida-type Hecke algebra that is not divisible
by p. One would then like to say that the result is the correctly nor-
malized p-adic L-function; there is no rule that allows us to determine
when a p-adic interpolation of normalized special values of complex
L-functions is correctly normalized, because there is no universal rule
for choosing integral periods. At the same time, one would like to say
that the linear forms on the the space of p-integral f 2 ⇡ spanned
by the L̃

can

(f, f 0), with f 0 p-integral in varying ⇡0, span the lattice of
integral linear forms. But the local defect def

loc

(⇡, ⇡0) discussed in the
previous section, even corrected by dividing by the Tamagawa factors
as in (4.14), may contribute extraneous powers of p.

If one assumes the appropriate Iwasawa-Greenberg Main Conjecture,
one would expect the µ-invariant of L

p

(s
cent

, ⇡ ⇥ ⇡0) to be reflected in
the corresponding Selmer group. The residual Galois representations
attached to ⇡ and ⇡0 are constant on the p-adic families, and may con-
tribute a non-trivial µ-invariant that is likewise constant in the family.
Thus we weaken the conditions.

Question 4.19. (1) Under the hypotheses of Question 4.15, suppose
the p-adic L-functions L

p

(s
cent

, ⇡ ⇥ ⇡0) exist and are normalized cor-
rectly. Fix ⇡ and let ⇡0 vary among ALL (ordinary or Panchishkin)
p-adic families with fixed first name, as in Question 2.2. Is it possible
that all the L

p

(s
cent

, ⇡ ⇥ ⇡0) are divisible by p?
(2) Same as (1), without the restriction on the first name.
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Remark 4.20. We have neglected to address another aspect of the
Ichino-Ikeda conjecture, namely the role of the factors C0�̃S

U(n). The
function �

U(n) is a product of special values of abelian L-functions of
F+, and its p-adic valuation is therefore related (by the Main Con-
jecture for totally real fields, proved by Wiles) to orders of ideal class
groups of F . This factor is independent of the choice of the (coherent)
pair (⇧,⇧0) and it is inconceivable that it is relevant to all the Selmer
groups that occur. I therefore assume that the presence of the factors
C0�̃S

U(n) should be explained by a choice of normalization of measures
and pairings, and with the correct normalizations these factors will not
a↵ect the answers to Questions 4.18 and 4.19.

Remark 4.21. In unpublished work, Eric Urban has shown how to
attach a p-adic distribution on U(n� 1) to the restriction of an auto-
morphic representation of U(n), and thus to define a p-adic version of
the pairing Lcan. It is an open problem to determine whether or not
the ordinary projection of this distribution is non-trivial.

5. p-adic continuity of invariant linear forms

In this section we assume V (and therefore V 0) totally definite. We
fix ⇧ and ⇧0 such that L(12 ,⇧⇥ ⇧0) 6= 0 and the (unique) pair ⇡, ⇡0 in
�(⇧, V )⇥�(⇧0, V 0) such that L

can

: ⇡⇥⇡0 ! C does not vanish identi-
cally. In what follows the superscript _ designates the contragredient;
⇡_, and ⇡0,_ are the complex conjugates of ⇡ and ⇡0, respectively. Let
f , f 0, f_, and f 0,_ vary among vectors in ⇡, ⇡0, ⇡_, and ⇡0,_ respectively,
of the form

(5.1) f = f1 ⌦ f
p

⌦ f p,1; f 0 = f 0
1 ⌦ f 0

p

⌦ f 0,p,1

with
f1 2 ⇡1 = ⌦

v|1⇡
v

; f
p

2 ⇡
p

= ⌦
v|p⇡v

and with similar definitions and factorizations for f 0, f_, and f 0,_. We
fix the factors f p,1, f 0,p,1, f_,p,1, f_,0,p,1for the remainder of the paper,
with the property that

Hypothesis 5.2. L
can

(f, f 0) ·L
can

(f_, f 0,_) 6= 0, for some f, f 0, f_, f 0,_

satisfying (5.1).

A more complete version of the Ichino-Ikeda conjecture lets f , f 0,
f_, and f 0,_ vary freely:
(5.3)
L
can

(f, f 0)L
can

(f_, f 0,_)

< f, f_ >2< f 0, f 0,_ >2
= 2��C0�

S

U(n)

Y

v2S

Z
v

(f
v

, f 0
v

, f_
v

, f 0,_
v

)P S(
1

2
, ⇡, ⇡0)
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Here each Z
v

(f
v

, f 0
v

, f_
v

, f 0,_
v

) = I(fv ,f 0
v ,f

_
v ,f

0,_
v )

<fv ,f
_
>v<f

0
v ,f

0,_
>v

is a normalized local

zeta integral, where I(f
v

, f 0
v

, f_
v

, f 0,_
v

) is the unnormalized local zeta
integral defined as in (1.2), with c(f

v

) and c(f 0
v

) replaced by the matrix
coe�cients
(5.4)
c(f

v

, f_
v

)(g) =< ⇡
v

(g
v

)f
v

, f_
v

>
v

; c(f 0
v

, f 0,_)(g0
v

) =< ⇡0
v

(g0
v

)f 0
v

, f 0,_
v

>
v

.

and it is assumed that

c(f
v

, f_
v

)(1) · c(f 0
v

, f 0,_) 6= 0

so that the normalization is well-defined.
With these assumptions, L

can

restricts to pairings

(5.5) ⇡
p,1 ⌦ ⇡0

p,1 ! C; ⇡_
p,1 ⌦ ⇡0,_

p,1 ! C
where ⇡

p,1 = ⇡
p

⌦ ⇡1 and similarly for the other three. Note that
⇡1 and ⇡0

1 and their contragredients are finite-dimensional algebraic
representations. We may assume the four spaces on the left-hand side
of (5.5) are defined over the CM field E = E(⇧,⇧0) (as algebraic
representations of G and G0 in the case of ⇡1 and ⇡0

1) and choose
constants P (⇡, ⇡0), such that L̃

can

:= P (⇡, ⇡0)�1L
can

: ⇡⌦⇡0 ! C takes
values in E; for the map L

can

: ⇡_ ⌦ ⇡0,_ ! C we can take P (⇡_, ⇡0,_)
to be the complex conjugate of P (⇡, ⇡0). Since V and V 0 are totally
definite, the constants Q(⇡) and Q(⇡0) can be taken to be in E, and in
fact we may normalize them both to equal 1.

Write f
p,1 = f1 ⌦ f

p

2 ⇡
p,1, f 0

p,1 = f 0
1 ⌦ f 0

p

2 ⇡0
p,1 and likewise for

the other two factors, and define the unnormalized local zeta integral

I
p,1(f

p,1, f 0
p,1, f_

p,1, f 0,_
p,1) =

Y

v|p

I
v

(f
v

, f 0
v

, f_
v

, f 0,_
v

)⇥
Y

v|1

I
v

(f
v

, f 0
v

, f_
v

, f 0,_
v

),

with notation as in (1.2). Applying the Ichino-Ikeda formula, and re-
calling that we have set Q(⇡) = Q(⇡0) = 1 in (1.4), we find

(5.6) L
can

(f, f 0)L
can

(f_, f 0,_) = I
p,1(f

p,1, f 0
p,1, f_

p,1, f 0,_
p,1)⇥ C

where

C = 2��C0�
S

U(n)

Y

v2S0

Z
v

(f
v

, f 0
v

)P S(
1

2
, ⇡, ⇡0)

is a constant for the purposes of the present section. Here S 0 is the
subset of S consisting of places not dividing p or 1. Moreover, we
may assume (possibly after modifying the local pairing at archimedean
primes, and compensating elsewhere) that C 2 E. Certainly the left-
hand side of (5.6) is algebraic, and with this normalization we now
know that I

p,1(f
p,1, f 0

p,1, f_
p,1, f 0,_

p,1) is algebraic.
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Write G
p,1⇥G0

p

for
Q

v|p Gv

⇥G0
v

= (R
F

+⌦Qp/QpG⇥G0)(Q
p

). Choose
an embedding ◆

p

: E ,! K where K is a finite extension of Q
p

, and use
◆
p

to view ⇡1 ⌦ ⇡0
1 as a K-valued algebraic representation of G⇥G0,

and thus of G
p,1⇥G0

p

. We may then view ⇡
p,1⌦⇡0

p,1 as an irreducible
locally algebraic representation of G

p

⇥ G0
p,1 with values in the non-

archimedean local field K. The set C(�) of admissible Banach space
completions of a locally algebraic representation � of a reductive group
G over Q

p

has been studied in connection with the p-adic local Lang-
lands program, notably in [1, 7, 29]. The set of such completions is well
understood for G = GL(2,Q

p

) but not in other cases. Nevertheless,
we may assume for the sake of argument that it has the structure of a
p-adic analytic space of some sort.

Question 5.7. For which admissible Banach completions C
�

(⇡
p,1 ⌦

⇡0
p,1) 2 C(⇡

p,1 ⌦ ⇡0
p,1) does L

can

extend continuously?

We fix f_
p,1 and f 0,_

p,1.

Principle 5.8. Assuming the linear form
(5.9)
L(f_

p,1, f 0,_
p,1) : ⇡

p,1⌦⇡0
p,1 ! K, f

p,1⇥f 0
p,1 7!< f

p,1, f_
p,1 >< f 0

p,1, f 0,_
p,1 >

extends continuously to the completion C
�

(⇡
p,1 ⌦ ⇡0

p,1), L
can

extends
continuously to C

�

(⇡
p,1 ⌦ ⇡0

p,1) if and only if the linear form

f
p,1 ⇥ f 0

p,1 7! I
p,1(f

p,1, f 0
p,1, f_

p,1, f 0,_
p,1)

extends continuously.

This is clearly a consequence of the expression 5.6. Nevertheless,
there is no reason a priori to assume (5.9) extends continuously when
f_
p,1 and f 0,_

p,1 are locally algebraic vectors. The admissible Banach
space completion C

�

(⇡
p,1 ⌦ ⇡0

p,1) has a dual (more than one, actu-
ally) that has no reason to be admissible, nor to contain the locally
algebraic vectors in the contragredient of ⇡

p,1 ⌦ ⇡0
p,1. The statement

of the principle is meant to suggest a vague analogy with (2.14) in
the complex analytic theory. It is also meant to be a possible starting
point for a study of Banach space completions of locally algebraic rep-
resentations, and their reductions modulo p, by means of restrictions
(possibly derived) to large subgroups. Some results in the case where
G = GL(2,Q

p

) and G0 is a non-split maximal torus have been obtained
by S. Morra in his thesis; but the general pattern is by no means clear.
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