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Introduction . A
Special values of L-functions

Main results

Automorphic vs. motivic L-functions: motivic L-functions

Motivic L-functions, attached to representations of Galois groups of
number fields, have [conjecturally] arithmetically meaningful special
values at integer points.

Example: ((2) = %2. The 72 reflects the relation of ¢(2) to the square
of the cyclotomic character, the denominator reflects deeper
properties of cyclotomic fields.

Deligne’s conjecture: certain special values, called critical, are
related to determinants of integrals of arithmetic differential forms (de
Rham cohomology of an algebraic variety whose ¢-adic cohomology
contains the Galois representation) over topological cycles on the
same variety.
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Main results

Deligne’s conjecture

Let M be a motive of rank n over Q, which can be identified with a
compatible family of /-adic Galois representations py » of rank n.
Then we define the L-function L(s, M) = [[, L, (s, M) where for
almost all p,

Ly(s,M) = [det(1 — pgpr(Froby)T) 7=y

Let 5o € Z be a critical value of L(s, M). (A crude version of)
Deligne’s conjecture:

L(so, M) ~ ¢ (s0,M)

where ¢ (so, M) is a certain determinant of periods of differential
forms on M twisted by Q(sp) [sic!] and ~ means “up to Q-multiples.
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Introduction . A
Special values of L-functions

Main results

Automorphic vs. motivic L-functions: automorphic
L-functions

Automorphic L-functions generally have no obvious connection to
arithmetic, but their special values are often expressed as integrals of
differential forms over locally symmetric varieties. Example:
Rankin-Selberg L-function of GL(n) x GL(n — 1).

Goal (in light of Deligne’s conjectures): relate such integrals to
arithmetic integrals on Shimura varieties. This is done by proving
period relations when the same L-function has different integral
representations (on different groups).

The Rankin-Selberg L-function of GL(n) x GL(1), in some cases, is
the standard L-function of a unitary group with integral representation
on a Shimura variety (hermitian locally symmetric space).
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Joint work with Grobner, with Grobner-Lapid, and more recent results
in the thesis of Lin Jie.

Let KC be a CM field, i.e. a totally imaginary quadratic extension of a
totally real number field F. (May assume F = QQ, K imaginary
quadratic.) An automorphic representation IT of GL(n) is
conjugate-dual if 11V = TI¢; ¢ € Gal(K/F) is complex conjugation.
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Special values of L-functions

Main results

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results
in the thesis of Lin Jie.

Let KC be a CM field, i.e. a totally imaginary quadratic extension of a
totally real number field F. (May assume F = QQ, K imaginary
quadratic.) An automorphic representation IT of GL(n) is
conjugate-dual if 11V = TI¢; ¢ € Gal(K/F) is complex conjugation.
@ We relate critical values of L(s, II x IT'), IT on GL(n), I on
GL(n — 1)k, to Whittaker periods.

© We relate Whittaker periods of (cuspidal) II to periods of
holomorphic forms on Shimura varieties.

© When F # Q, we [i.e., Lin Jie] express these periods as products
over the real places of F of periods on simpler Shimura varieties.
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The JPSS zeta integral

Let G = GL(n), G' = GL(n — 1). Let IT x II' be an automorphic
representation of G x G’ over K, II cuspidal,

Michael Harri Eisenstein cohomology and special values of L-functions



Rankin-Selberg L-functions
Rankin-Selberg and cohomology Analytic periods
Motivic periods

The JPSS zeta integral

Let G = GL(n), G' = GL(n — 1). Let IT x II' be an automorphic
representation of G x G’ over K, II cuspidal,

t:G = G, 1(g) = diag(g',1)
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The JPSS zeta integral

Let G = GL(n), G' = GL(n — 1). Let IT x II' be an automorphic
representation of G x G’ over K, II cuspidal,

t:G = G, 1(g) = diag(g',1)

The JPSS zeta integral for G x G over K is

Z(s.6, ') = / 6(:(8))8/ (&) |der(g))| g’

G'(K)\G'(A)
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The JPSS zeta integral

Let G = GL(n), G' = GL(n — 1). Let IT x II' be an automorphic
representation of G x G’ over K, II cuspidal,

t:G = G, 1(g) = diag(g',1)

The JPSS zeta integral for G x G over K is

Z(s.6, ') = / 6(:(8))8/ (&) |der(g))| g’

G'(K)\G'(A)

When II and IT are cohomological representations, and ¢, ¢’
cohomological vectors, Z(s, ¢, ¢’) can be interpreted as a cup product
on the locally symmetric space for G x G'.
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The cup product

If IT is cuspidal and H'(gl(n), U(n); Ilo ® W) # 0 for some finite
dimensional representation W
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The cup product

If IT is cuspidal and H'(gl(n), U(n); Ilo ® W) # 0 for some finite

n(n—1)

dimensional representation W then the lowest degree i is b, = ——

and dim H> = 1.
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The cup product

If IT is cuspidal and H'(gl(n), U(n); Ilo ® W) # 0 for some finite

n(n—1)

dimensional representation W then the lowest degree i is b, = ——

and dim H> = 1.

Now by, 4+ b, = (n —1)> =dim G’ (R)/U(n — 1) = dimgS,_1,
where

kSi—1 = G'(K)\G'(A)/U(n — 1) x K,
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If IT is cuspidal and H'(gl(n), U(n); Ilo ® W) # 0 for some finite
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dimensional representation W then the lowest degree i is b, = ——

and dim H> = 1.

Now by, 4+ b, = (n —1)> =dim G’ (R)/U(n — 1) = dimgS,_1,
where
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The cup product

If IT is cuspidal and H'(gl(n), U(n); Ilo ® W) # 0 for some finite

n(n—1)

dimensional representation W then the lowest degree i is b, = ——

and dim H> = 1.
Now by, 4+ b, = (n —1)> =dim G’ (R)/U(n — 1) = dimgS,_1,
where

kSu—1 =G (K)\G'(A)/U(n— 1) x K, K C G'(Ay).

Thus the expression ¢(t(g"))¢'(g') is a top degree differential
we U we on kS, for appropriate choice of ¢, ¢’ and the JPSS
integral is its image in top-degree compactly-supported cohomology.
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Assume
Hypotheses (Good Position Hypotheses)
@ 1T tempered, H>~'(gl(n — 1), U(n — 1); 11,y @ W') # 0.
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1-dimensional.
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Michael Harris Eisenstein cohomology and special values of L-functions



Rankin-Selberg and cohomology

The fine print

Assume
Hypotheses (Good Position Hypotheses)
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@ Homg (W @ W', C) # 0 (in which case the space is
1-dimensional.

Otherwise the cup product vanishes.
The JPSS integral has an Euler product: if S is the (finite) set of
archimedean and ramified primes, then
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The fine print

Assume
Hypotheses (Good Position Hypotheses)
@ 1T tempered, H>~'(gl(n — 1), U(n — 1); 11,y @ W') # 0.

@ Homg (W @ W', C) # 0 (in which case the space is
1-dimensional.

Otherwise the cup product vanishes.
The JPSS integral has an Euler product: if S is the (finite) set of
archimedean and ramified primes, then

=HZV(S7¢V,¢V HZ L v, @) x L5(s, 1L, I1).
v veES
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The fine print

Assume
Hypotheses (Good Position Hypotheses)
@ 1T tempered, H>~'(gl(n — 1), U(n — 1); 11,y @ W') # 0.

@ Homg (W @ W', C) # 0 (in which case the space is
1-dimensional.

Otherwise the cup product vanishes.
The JPSS integral has an Euler product: if S is the (finite) set of
archimedean and ramified primes, then

=HZV(S7¢V,¢V HZ L v, @) x L5(s, 1L, I1).

veES

Can ignore non-archimedean places in S; we’ll see about the
archimedean factors Z, (s, ¢,, ¢!,) later.
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Rationality

= relation between L(so, IT, 1I') and Tr[wg U wy | for so critical.

Eisenstein cohomology and special values of L-functions



functions
Rankin-Selberg and cohomology
Motivic periods

Rationality
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o, @' cohomologically rational :

= Trlwy, Uwy] € Q.
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= relation between L(so, IT, 1I') and Tr[wg U wy | for so critical.

o, @' cohomologically rational :
= Trlwy, Uwy] € Q.
¢, ¢ Whittaker rational (Fourier coefficients in Q) :
= Z(s0, ¢, @) ~ L(so, IL, IT") for critical s¢

Factors of proportionality in C*, well-defined up to Q-multiples,
relate these two Q-structures: call them p(IT) and p(II'). Then
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Rationality

= relation between L(so, IT, 1I') and Tr[wg U wy | for so critical.

o, @' cohomologically rational :
= Trlwy, Uwy] € Q.
¢, ¢ Whittaker rational (Fourier coefficients in Q) :
= Z(s0, ¢, @) ~ L(so, IL, IT") for critical s¢

Factors of proportionality in C*, well-defined up to Q-multiples,
relate these two Q-structures: call them p(IT) and p(II'). Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

If o is critical and 11, 1 satisfy the hypotheses, then
3 peo = p(s0, o, I1,,)) € C* such that

L(s0, ILIT) ~ poop(I1)p(IT').
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Theorem (Mahnkopf, Raghuram et al., Grobner-H)
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Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)
MY ~ 11¢, IV ~ I1"°
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Archimedean factors

We assume
Hypotheses (Polarization Hypothesis)

IV ~ II¢, IT"V ~ 11", where € is the action of Galois conjugation.
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Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)
[TV ~ II¢, 11"V ~ 11", where € is the action of Galois conjugation. J

B.-Y. Sun has shown that the complex number p, # 0 under the
Good Position Hypotheses.
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Archimedean factors

We assume
Hypotheses (Polarization Hypothesis) J

[TV ~ II¢, 11"V ~ 11", where € is the action of Galois conjugation.

B.-Y. Sun has shown that the complex number p, # 0 under the
Good Position Hypotheses. Lin Jie has used period relations (see
below) to identify p, as a power of 7, up to algebraic factors.
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Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)
[TV ~ II¢, 11"V ~ 11", where € is the action of Galois conjugation. J

B.-Y. Sun has shown that the complex number p, # 0 under the
Good Position Hypotheses. Lin Jie has used period relations (see
below) to identify p, as a power of 7, up to algebraic factors.

But what is the relation of p(II) to algebraic geometry, i.e. to ¢t (M),
where M = M(II) is a motive attached to II?
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Shahidi’s formula

Suppose IT" = I} x --- x II,, IT; on GL(n;), Y ;n; = n — 1.
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Shahidi’s formula

Suppose IT" = I} x --- x II,, IT; on GL(n;), Y ;n; = n — 1.

Theorem (Shahidi, essentially)

.
pI) ~ oo - [[p() x ] LOm@IL).
i=1 1<i<j<r
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Shahidi’s formula

Suppose IT" = I} x --- x II,, IT; on GL(n;), Y ;n; = n — 1.

Theorem (Shahidi, essentially)

.
pI) ~ oo - [[p() x ] LOm@IL).
i=1 1<i<j<r

Also, if n; = 1, then p(11;) ~ 1.
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Shahidi’s formula

Suppose IT" = I} x --- x II,, IT; on GL(n;), Y ;n; = n — 1.

Theorem (Shahidi, essentially)

.
pI) ~ oo - [[p() x ] LOm@IL).
i=1 1<i<j<r

Also, if n; = 1, then p(11;) ~ 1.

In Grobner-H. this is applied when each n; = 1 and the II; = y; are
algebraic Hecke characters.
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Motivic periods

Shahidi’s formula

Suppose IT" = I} x --- x II,, IT; on GL(n;), Y ;n; = n — 1.
Theorem (Shahidi, essentially)

pI) ~ oo - [[p() x ] LOm@IL).
i=1

1<i<j<r
Also, if n; = 1, then p(11;) ~ 1.

In Grobner-H. this is applied when each n; = 1 and the II; = y; are
algebraic Hecke characters. Then

LI @ 1) = L(1, xi/ X)) = p(Xi/ X))

is a period of a CM abelian variety (Damarell, Shimura, Blasius).

Michael Harris
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Shahidi’s formula

Suppose IT" = I} x --- x II,, IT; on GL(n;), Y ;n; = n — 1.
Theorem (Shahidi, essentially)

.
pI) ~ oo - [[p() x ] LOm@IL).
i=1 1<i<j<r

Also, if n; = 1, then p(11;) ~ 1.

In Grobner-H. this is applied when each n; = 1 and the II; = y; are
algebraic Hecke characters. Then

LI @ 1) = L(1, xi/ X)) = p(Xi/ X))

is a period of a CM abelian variety (Damarell, Shimura, Blasius).
Thus p(IT') is a product of CM periods (known quantities).
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Relation to unitary Shimura varieties, 1

On the other hand, the polarization hypothesis implies
@ Each of II, II descends to holomorphic representations ,, 7, of
unitary groups U(a,n — a), U(b,n — 1 — b) for all a, b [some
local hypotheses may be necessary]
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Relation to unitary Shimura varieties, 1

On the other hand, the polarization hypothesis implies
@ Each of II, II descends to holomorphic representations ,, 7, of
unitary groups U(a,n — a), U(b,n — 1 — b) for all a, b [some
local hypotheses may be necessary]
@ The Deligne period ¢ (M(IT) ® M(IT')) has a simplified
expression [see below]
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Relation to unitary Shimura varieties, 1

On the other hand, the polarization hypothesis implies
@ Each of II, II descends to holomorphic representations ,, 7, of
unitary groups U(a,n — a), U(b,n — 1 — b) for all a, b [some
local hypotheses may be necessary]
@ The Deligne period ¢ (M(IT) ® M(IT')) has a simplified
expression [see below]
Concretely, this means that for each a there is a holomorphic modular
formf, € m,on U(a,n — a)
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Relation to unitary Shimura varieties, 1

On the other hand, the polarization hypothesis implies
@ Each of II, II descends to holomorphic representations ,, 7, of
unitary groups U(a,n — a), U(b,n — 1 — b) for all a, b [some
local hypotheses may be necessary]
@ The Deligne period ¢ (M(IT) ® M(IT')) has a simplified
expression [see below]
Concretely, this means that for each a there is a holomorphic modular
form f, € 7, on U(a,n — a) with arithmetic normalization
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Relation to unitary Shimura varieties, 1

On the other hand, the polarization hypothesis implies

@ Each of II, II descends to holomorphic representations ,, 7, of
unitary groups U(a,n — a), U(b,n — 1 — b) for all a, b [some
local hypotheses may be necessary]

@ The Deligne period ¢ (M(IT) ® M(IT')) has a simplified
expression [see below]

Concretely, this means that for each a there is a holomorphic modular
form f, € 7, on U(a,n — a) with arithmetic normalization such that
L(s,m,) = L(s,II) where L(s, 7,) is the standard L-function
(PS-Rallis).
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Relation to unitary Shimura varieties, 1

On the other hand, the polarization hypothesis implies

@ Each of II, II descends to holomorphic representations ,, 7, of
unitary groups U(a,n — a), U(b,n — 1 — b) for all a, b [some
local hypotheses may be necessary]

@ The Deligne period ¢ (M(IT) ® M(IT')) has a simplified
expression [see below]

Concretely, this means that for each a there is a holomorphic modular
form f, € 7, on U(a,n — a) with arithmetic normalization such that
L(s,m,) = L(s,II) where L(s, 7,) is the standard L-function
(PS-Rallis).

Also, each x; descends to 7; on U(1).
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Relation to unitary Shimura varieties, 2

IfIl = X1 X -+ X Xn—1 then

L(s, TIXIT') = [ ] L(s, T@x;odet) = [ ] L(s, ma@niodet)
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Relation to unitary Shimura varieties, 2

IfIl = X1 X -+ X Xn—1 then

L(s, TIXIT') = [ ] L(s, T@xsodet) = [ [ L(s, ma@micdet), 0 < a < n—1
i i
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Relation to unitary Shimura varieties, 2

IfIl = X1 X -+ X Xn—1 then

L(s, TIXIT') = [ ] L(s, T@xsodet) = [ [ L(s, ma@micdet), 0 < a < n—1
i i

In the 1990s, MH showed that, for s critical and 7; fixed, there exists
a = a(I1, ;) such that
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Relation to unitary Shimura varieties, 2

IfIl = X1 X -+ X Xn—1 then

L(s, IIxIT") = HL(S, [Ty odet) = HL(S, ma@niodet), 0 <a <n—1
i i

In the 1990s, MH showed that, for s critical and 7; fixed, there exists

a = a(I1, ;) such that

L(s0, Ta ® n; 0 det) ~ 760 Q4 (T1) - dy ().
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Relation to unitary Shimura varieties, 2

IfII' = x; X -+ X X,—1 then
L(s, TIXIT') = [ ] L(s, T@xsodet) = [ [ L(s, ma@micdet), 0 < a < n—1
i i
In the 1990s, MH showed that, for s critical and 7; fixed, there exists
a = a(II, x;) such that
L(s0, Ta ® n; 0 det) ~ 760 Q4 (T1) - dy ().
for some CM period d,(7;) and some integer m(sg), where

Qa(H) :<fa7fa >
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Relation to unitary Shimura varieties, 2

IfIl = X1 X -+ X Xn—1 then

L(s, TIXIT') = [ ] L(s, T@xsodet) = [ [ L(s, ma@micdet), 0 < a < n—1
i i

In the 1990s, MH showed that, for s critical and 7; fixed, there exists
a = a(I1, ;) such that

L(s0, ™4 @ n; 0 det) ~ 70 Q (1) - dy(my).
for some CM period d,(7;) and some integer m(sg), where
Qa(H) :<fa7fa >

(Petersson norm of an arithmetically normalized holomorphic
modular form).
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Relation to unitary Shimura varieties, 3

The CM periods cancel, and we find
Theorem (Grobner-H., Lin)

Suppose L(s,I1 ® x;) has a non-vanishing critical value for each i.
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Relation to unitary Shimura varieties, 3

The CM periods cancel, and we find
Theorem (Grobner-H., Lin)

Suppose L(s,I1 ® x;) has a non-vanishing critical value for each i.
(automatic if 11 is sufficiently regular). Then

n—1
p(IT) ~ 7 TT Qa(1)
a=1

for some explicit integer u(n) that depends only on n.
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Question for analytic number theorists

Can the regularity assumption be relaxed?

Question J
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Question for analytic number theorists

Question J

Can the regularity assumption be relaxed?

This comes down to a question in analytic number theory: can one
arrange that, after twisting by a character of finite order, the central
value of the L-function doesn’t vanish?
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Comparison with Deligne’s conjecture

For IT' cuspidal rather than Eisenstein,
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Comparison with Deligne’s conjecture

For IT' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)
Under the Polarization and Good Position Hypotheses,
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. . . . N . General results
Comparison with Deligne’s conjecture

Comparison with Deligne’s conjecture

For IT' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming
sufficiently regularity, we have (for some explicit integer p(n,n — 1))

n—1 n—2
L(so, T x I) ~ 707D TT Qu(1) T ] @o(1T').
a=1 b=1
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Comparison with Deligne’s conjecture

For IT' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming
sufficiently regularity, we have (for some explicit integer p(n,n — 1))

n—1 n—2
L(so, T x I) ~ 707D TT Qu(1) T ] @o(1T').
a=1 b=1

On the other hand, under the same Hypotheses,
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Comparison with Deligne’s conjecture

For IT' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming
sufficiently regularity, we have (for some explicit integer p(n,n — 1))

n—2
L(s0, T x TI') ~ et =1) HQa m) [ e»(m).
=1

On the other hand, under the same Hypotheses,

n—1 n—2
C+(S0,M(H) ®M(H/)) ~ 7.l.u(n,nfl) H QSa(M(H)) H ng(M 1I
b=1

a=1

for some (motivic) invariants Q<,(M(II)), Q<p(M(IT")).
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Automorphic periods as motivic periods

There is a plausible narrative that identifies Q,(II) ~ Q<,(M(II))
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Automorphic periods as motivic periods

There is a plausible narrative that identifies Q,(II) ~ Q<,(M(II))
(assuming a reasonable theory of motives).
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. X N S . General results
Comparison with Deligne’s conjecture

Automorphic periods as motivic periods

There is a plausible narrative that identifies Q,(II) ~ Q<,(M(II))
(assuming a reasonable theory of motives).

And the computation on the last slide of ¢ (so, M(IT) ® M(IT')) can
be carried out without the Good Position Hypothesis.
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Deligne periods without the Good Position Hypothesis

Proposition (MH,Lin)

Let 11} cuspidal for GL(ny), 11, cuspidal for GL(ny), ny < nj.
Assume 11y and 11, satisfy the Polarization Hypothesis and let sy be
critical for L(s, M(I1}) ® M(IL,)).
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Deligne periods without the Good Position Hypothesis

Proposition (MH,Lin)

Let 11} cuspidal for GL(ny), 11, cuspidal for GL(ny), ny < nj.
Assume 11y and 11, satisfy the Polarization Hypothesis and let sy be
critical for L(s, M(I1}) ® M(IL,)).

Then there are integers j1(ny,ny) and exponents

S(IT} 00, o o0, @), 8’ (2,00, I o0, b) such that

C+(S(),M(H]) & M(Hz)) ~

n1—1 I’lz—l
Wu(nl,nz) H QSa(M(H]))S(HI,omnz,ooﬂ) H ng(M(HZ))SI(Hz’OO’HI’m’b ]
a=1 b=1

4
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Deligne periods without the Good Position Hypothesis

Proposition (MH,Lin)

Let 11} cuspidal for GL(ny), 11, cuspidal for GL(ny), ny < nj.
Assume 11y and 11, satisfy the Polarization Hypothesis and let sy be
critical for L(s, M(I1}) ® M(IL,)).

Then there are integers j1(ny,ny) and exponents

S(IT} 00, o o0, @), 8’ (2,00, I o0, b) such that

C+(S(),M(H]) & M(Hz)) ~

n1—1 I’lz—l
Wu(nl,nz) H QSa(M(H]))S(HI,omnz,ooﬂ) H ng(M(HZ))SI(Hz’OO’HI’m’b ]
a=1 b=1

4

The Q<, and Q<;, are as in the previous slide.
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New results of Lin

@ For any ny < ny, under generalized Good Position Hypothesis,
she can prove

nlfl nzfl
Wu(nhnz) H Qa(Hl )S(Hlpo,nz,oo,a) H Qb(Hl)s’(Hgo,Hoo,b).
a=1 b=1

Michael Harri Eisenstein cohomology and special values of L-functions
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. X N o . General results
Comparison with Deligne’s conjecture

New results of Lin

@ For any ny < ny, under generalized Good Position Hypothesis,
she can prove

nlfl nzfl
Wu(nhnz) H Qa(Hl )S(Hlpo,nz,oo,a) H Qb(Hl)s’(Hgo,Hoo,b).
a=1 b=1

with same p(ny,ny), s(Ilo, 1., a), s’ (I, o, B).
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. X N S . General results
Comparison with Deligne’s conjecture

New results of Lin

@ For any ny < ny, under generalized Good Position Hypothesis,
she can prove

nlfl nzfl
Wu(nhnz) H Qa(Hl )S(Hlpo,nz,oo,a) H Qb(Hl)s’(Hgo,Hoo,b).
a=1 b=1

with same p(ny,ny), s(Ilo, 1., a), s’ (I, o, B).
© Without Good Position Hypothesis, she proves this for s = 1
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Results for Good Position

. X N S . General results
Comparison with Deligne’s conjecture

New results of Lin

@ For any ny < ny, under generalized Good Position Hypothesis,
she can prove

nlfl nzfl
Wu(nhnz) H Qa(Hl )S(Hlpo,nz,oo,a) H Qb(Hl)s’(Hgo,Hoo,b).
a=1 b=1

with same p(ny,ny), s(Ilo, 1., a), s’ (I, o, B).
© Without Good Position Hypothesis, she proves this for s = 1
using Shahidi’s formula, for very regular I, II,.
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Results for Good Position

. X N S . General results
Comparison with Deligne’s conjecture

New results of Lin

@ For any ny < ny, under generalized Good Position Hypothesis,
she can prove

L(so, IT} x IIp) ~

nlfl nzfl
Wu(nhnz) H Qa(Hl )S(Hlpo,nz,oo,a) H Qb(Hl)s’(Hgo,Hoo,b).
a=1 b=1

with same p(ny,ny), s(Ilo, 1., a), s’ (I, o, B).
© Without Good Position Hypothesis, she proves this for s = 1
using Shahidi’s formula, for very regular I, II,.

© For general CM fields, gets many distinct expressions for the
same L(so, IT; x II);
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Results for Good Position

. X N S . General results
Comparison with Deligne’s conjecture

New results of Lin

@ For any ny < ny, under generalized Good Position Hypothesis,
she can prove

L(so, IT} x IIp) ~

nlfl nzfl
Wu(nhnz) H Qa(Hl )S(Hlpo,nz,oo,a) H Qb(Hl)s’(Hgo,Hoo,b).
a=1 b=1

with same p(ny,ny), s(Ilo, 1., a), s’ (I, o, B).

© Without Good Position Hypothesis, she proves this for s = 1
using Shahidi’s formula, for very regular I, II,.

© For general CM fields, gets many distinct expressions for the
same L(so, IT; x II,); implies factorization of Q,(II) over real
places.
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Cup products with general Eisenstein classes

In the work with Grobner, IT is cuspidal and IT' is tempered
Eisenstein, induced from a character of a Borel.
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. X N S . General results
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Cup products with general Eisenstein classes

In the work with Grobner, IT is cuspidal and IT' is tempered
Eisenstein, induced from a character of a Borel.

Shahidi’s formula computes p(I1') for any tempered Eisenstein class,
with Y m;=n—1:

pI) ~coo - [[p() x [ LOLTL@IL).
i=1

1<i<j<r
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Cup products with general Eisenstein classes

In the work with Grobner, IT is cuspidal and IT' is tempered
Eisenstein, induced from a character of a Borel.

Shahidi’s formula computes p(I1') for any tempered Eisenstein class,
with Y m;=n—1:

pI) ~coo - [[p() x [ LOLTL@IL).
i=1

1<i<j<r

To prove (1), Lin takes n = ny, m; = np, m; = 1,i > 1, choosing
II' =TI X x2 -+ X X, so that IT and IT’ are in good position.
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Cup products with general Eisenstein classes

To prove (2), she takes r = 2, IT' = II; x H}/, andn=mn; +ny + 1.
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Cup products with general Eisenstein classes

To prove (2), she takes r = 2, IT' = II; x H}/, andn=mn; +ny + 1.
Shahidi’s formula gives an expression for p(II; x II3) on GL(n — 1)
in terms of L(1,11; x II,).
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. X N S . General results
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Cup products with general Eisenstein classes

To prove (2), she takes r = 2, IT' = II; x H}/, andn=mn; +ny + 1.
Shahidi’s formula gives an expression for p(II; x II3) on GL(n — 1)
in terms of L(1,11; x II,).

Then she takes a sufficiently general cuspidal IT on GL(n) and shows
that its contribution cancels, leaving only an expression for
L(1,1II; x II) in terms of motivic periods.
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Cup products with general Eisenstein classes

To prove (2), she takes r = 2, IT' = II; x H}/, andn=mn; +ny + 1.
Shahidi’s formula gives an expression for p(II; x II3) on GL(n — 1)
in terms of L(1,11; x II,).

Then she takes a sufficiently general cuspidal IT on GL(n) and shows
that its contribution cancels, leaving only an expression for
L(1,1II; x II) in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct
expressions for the same special value in terms of periods;
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. X B S, . General results
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Cup products with general Eisenstein classes

To prove (2), she takes r = 2, IT' = II; x H}/, andn=mn; +ny + 1.
Shahidi’s formula gives an expression for p(II; x II3) on GL(n — 1)
in terms of L(1,11; x II,).

Then she takes a sufficiently general cuspidal IT on GL(n) and shows
that its contribution cancels, leaving only an expression for
L(1,1II; x II) in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct
expressions for the same special value in terms of periods;this implies
period relations
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. X B S, . General results
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Cup products with general Eisenstein classes

To prove (2), she takes r = 2, IT' = II; x H}/, andn=mn; +ny + 1.
Shahidi’s formula gives an expression for p(II; x II3) on GL(n — 1)
in terms of L(1,11; x II,).

Then she takes a sufficiently general cuspidal IT on GL(n) and shows
that its contribution cancels, leaving only an expression for
L(1,1II; x II) in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct
expressions for the same special value in terms of periods;this implies
period relations (predicted by Tate Conjecture).
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