Eisenstein cohomology and special values of *L*-functions

Michael Harris

Cornell, September 2015

Outline

Introduction

- Special values of *L*-functions
- Main results
- 2 Rankin-Selberg and cohomology
 - Rankin-Selberg L-functions
 - Analytic periods
 - Motivic periods

Omparison with Deligne's conjecture

- Results for Good Position
- General results

A 3

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper

properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de

Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

イロト 不得 トイヨト イヨト

Motivic *L*-functions, attached to representations of Galois groups of number fields, have [conjecturally] arithmetically meaningful special values at integer points.

Example: $\zeta(2) = \frac{\pi^2}{6}$. The π^2 reflects the relation of $\zeta(2)$ to the square of the cyclotomic character, the denominator reflects deeper properties of cyclotomic fields.

Deligne's conjecture: certain special values, called *critical*, are related to determinants of integrals of arithmetic differential forms (de Rham cohomology of an algebraic variety whose ℓ -adic cohomology contains the Galois representation) over topological cycles on the same variety.

イロト 不得 トイヨト イヨト

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of *L*-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T = q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of L-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T = q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of *L*-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T = q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of *L*-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T=q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of *L*-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T=q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples

イロト 不得 とくき とくき とうき

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of *L*-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T=q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples.

・ロト ・ 一 マ ト ・ 日 ト ・

Rankin-Selberg and cohomology Comparison with Deligne's conjecture Special values of *L*-functions Main results

Deligne's conjecture

Let *M* be a motive of rank *n* over \mathbb{Q} , which can be identified with a compatible family of ℓ -adic Galois representations $\rho_{\ell,M}$ of rank *n*. Then we define the *L*-function $L(s, M) = \prod_p L_p(s, M)$ where for almost all *p*,

$$L_p(s, M) = [\det(1 - \rho_{\ell, M}(Frob_p)T)^{-1}]_{T=q^{-s}}$$

Let $s_0 \in \mathbb{Z}$ be a critical value of L(s, M). (A crude version of) Deligne's conjecture:

$$L(s_0, M) \sim c^+(s_0, M)$$

where $c^+(s_0, M)$ is a certain determinant of periods of differential forms on M twisted by $\mathbb{Q}(s_0)$ [sic!] and \sim means "up to $\overline{\mathbb{Q}}$ -multiples.

・得い イラン イラン・ラ

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

イロト イポト イヨト イヨト

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

イロト (福) (ほ) (ほ)

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

イロト イポト イヨト イヨト

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

イロト イポト イヨト イヨト

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

イロト (福) (ほ) (ほ)

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト ・

Special values of *L*-functions Main results

Automorphic vs. motivic *L*-functions: automorphic *L*-functions

Automorphic *L*-functions generally have no obvious connection to arithmetic, but their special values are often expressed as integrals of differential forms over locally symmetric varieties. Example: Rankin-Selberg *L*-function of $GL(n) \times GL(n-1)$.

Goal (in light of Deligne's conjectures): relate such integrals to arithmetic integrals on Shimura varieties. This is done by proving *period relations* when the same *L*-function has different integral representations (on different groups).

The Rankin-Selberg *L*-function of $GL(n) \times GL(1)$, in some cases, is the standard *L*-function of a unitary group with integral representation on a Shimura variety (hermitian locally symmetric space).

< ロ > < 同 > < 回 > < 回 > < □ > <

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- We relate Whittaker periods of (cuspidal) ∏ to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

イロト イ得ト イヨト イヨト

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- We relate Whittaker periods of (cuspidal) ∏ to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- We relate Whittaker periods of (cuspidal) ∏ to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- We relate Whittaker periods of (cuspidal) ∏ to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- ② We relate Whittaker periods of (cuspidal) ∏ to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

イロト 不得 とくき とくき とうき

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- We relate Whittaker periods of (cuspidal) Π to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

イロト 不得 とくき とくき とうき

Description of main results

Joint work with Grobner, with Grobner-Lapid, and more recent results in the thesis of Lin Jie.

Let \mathcal{K} be a CM field, i.e. a totally imaginary quadratic extension of a totally real number field F. (May assume $F = \mathbb{Q}$, \mathcal{K} imaginary quadratic.) An automorphic representation Π of $GL(n)_{\mathcal{K}}$ is *conjugate-dual* if $\Pi^{\vee} = \Pi^{c}$; $c \in Gal(\mathcal{K}/F)$ is complex conjugation.

- We relate critical values of $L(s, \Pi \times \Pi')$, Π on $GL(n)_{\mathcal{K}}$, Π' on $GL(n-1)_{\mathcal{K}}$, to Whittaker periods.
- We relate Whittaker periods of (cuspidal) Π to periods of holomorphic forms on Shimura varieties.
- When F ≠ Q, we [i.e., Lin Jie] express these periods as products over the real places of F of periods on simpler Shimura varieties.

Rankin-Selberg L-functions Analytic periods Motivic periods

The JPSS zeta integral

Let G = GL(n), G' = GL(n-1). Let $\Pi \times \Pi'$ be an automorphic representation of $G \times G'$ over \mathcal{K} , Π cuspidal,

 $\iota:G'\hookrightarrow G,\ \iota(g')=diag(g',1)$

The JPSS zeta integral for $G \times G'$ over \mathcal{K} is

$$Z(s,\phi,\phi') = \int_{G'(\mathcal{K})\backslash G'(\mathbb{A})} \phi(\iota(g'))\phi'(g')||det(g')||^s dg'.$$

When Π and Π' are cohomological representations, and ϕ , ϕ' cohomological vectors, $Z(s, \phi, \phi')$ can be interpreted as a cup product on the locally symmetric space for $G \times G'$.

Rankin-Selberg L-functions Analytic periods Motivic periods

The JPSS zeta integral

Let G = GL(n), G' = GL(n-1). Let $\Pi \times \Pi'$ be an automorphic representation of $G \times G'$ over \mathcal{K} , Π cuspidal,

$$\iota:G' \hookrightarrow G, \ \iota(g') = diag(g',1)$$

The JPSS zeta integral for $G \times G'$ over \mathcal{K} is

$$Z(s,\phi,\phi') = \int_{G'(\mathcal{K})\backslash G'(\mathbb{A})} \phi(\iota(g'))\phi'(g')||det(g')||^s dg'.$$

When Π and Π' are cohomological representations, and ϕ , ϕ' cohomological vectors, $Z(s, \phi, \phi')$ can be interpreted as a cup product on the locally symmetric space for $G \times G'$.

The JPSS zeta integral

Let G = GL(n), G' = GL(n-1). Let $\Pi \times \Pi'$ be an automorphic representation of $G \times G'$ over \mathcal{K} , Π cuspidal,

$$\iota:G' \hookrightarrow G, \ \iota(g') = diag(g',1)$$

The JPSS zeta integral for $G \times G'$ over \mathcal{K} is

$$Z(s,\phi,\phi') = \int_{G'(\mathcal{K})\backslash G'(\mathbf{A})} \phi(\iota(g'))\phi'(g') ||det(g')||^s dg'.$$

When Π and Π' are cohomological representations, and ϕ , ϕ' cohomological vectors, $Z(s, \phi, \phi')$ can be interpreted as a cup product on the locally symmetric space for $G \times G'$.

Rankin-Selberg L-functions Analytic periods Motivic periods

The JPSS zeta integral

Let G = GL(n), G' = GL(n-1). Let $\Pi \times \Pi'$ be an automorphic representation of $G \times G'$ over \mathcal{K} , Π cuspidal,

$$\iota:G' \hookrightarrow G, \ \iota(g') = diag(g',1)$$

The JPSS zeta integral for $G \times G'$ over \mathcal{K} is

$$Z(s,\phi,\phi') = \int_{G'(\mathcal{K})\backslash G'(\mathbf{A})} \phi(\iota(g'))\phi'(g') ||det(g')||^s dg'.$$

When Π and Π' are cohomological representations, and ϕ , ϕ' cohomological vectors, $Z(s, \phi, \phi')$ can be interpreted as a cup product on the locally symmetric space for $G \times G'$.

The cup product

If Π is cuspidal and $H^i(\mathfrak{gl}(n), U(n); \Pi_{\infty} \otimes W) \neq 0$ for some finite dimensional representation W then the lowest degree i is $b_n = \frac{n(n-1)}{2}$ and dim $H^{b_n} = 1$.

Now $b_n + b_{n-1} = (n-1)^2 = \dim G'(\mathbb{R})/U(n-1) = \dim_K \tilde{S}_{n-1}$, where

$$_{K}\widetilde{S}_{n-1} = G'(\mathcal{K}) \setminus G'(\mathbf{A}) / U(n-1) \times K, \ K \subset G'(\mathbf{A}_{f}).$$

Thus the expression $\phi(\iota(g'))\phi'(g')$ is a top degree differential $\omega_{\phi} \cup \omega_{\phi'}$ on $_{K}\tilde{S}_{n-1}$ for appropriate choice of ϕ , ϕ' and the JPSS integral is its image in top-degree compactly-supported cohomology.

イロト イ得ト イヨト イヨト

The cup product

If Π is cuspidal and $H^i(\mathfrak{gl}(n), U(n); \Pi_\infty \otimes W) \neq 0$ for some finite dimensional representation *W* then the lowest degree *i* is $b_n = \frac{n(n-1)}{2}$ and dim $H^{b_n} = 1$.

Now $b_n + b_{n-1} = (n-1)^2 = \dim G'(\mathbb{R})/U(n-1) = \dim_K \tilde{S}_{n-1}$, where

$$_{K}\widetilde{S}_{n-1} = G'(\mathcal{K}) \setminus G'(\mathbf{A}) / U(n-1) \times K, \ K \subset G'(\mathbf{A}_{f}).$$

Thus the expression $\phi(\iota(g'))\phi'(g')$ is a top degree differential $\omega_{\phi} \cup \omega_{\phi'}$ on $_K \tilde{S}_{n-1}$ for appropriate choice of ϕ, ϕ' and the JPSS integral is its image in top-degree compactly-supported cohomology.

(日)

The cup product

If Π is cuspidal and $H^i(\mathfrak{gl}(n), U(n); \Pi_\infty \otimes W) \neq 0$ for some finite dimensional representation *W* then the lowest degree *i* is $b_n = \frac{n(n-1)}{2}$ and dim $H^{b_n} = 1$.

Now $b_n + b_{n-1} = (n-1)^2 = \dim G'(\mathbb{R})/U(n-1) = \dim_K \tilde{S}_{n-1}$, where

$$_{K}\widetilde{S}_{n-1} = G'(\mathcal{K}) \setminus G'(\mathbf{A}) / U(n-1) \times K, \ K \subset G'(\mathbf{A}_{f}).$$

Thus the expression $\phi(\iota(g'))\phi'(g')$ is a top degree differential $\omega_{\phi} \cup \omega_{\phi'}$ on $_{K}\tilde{S}_{n-1}$ for appropriate choice of ϕ , ϕ' and the JPSS integral is its image in top-degree compactly-supported cohomology.

イロト 不得 トイヨト イヨト 二日

The cup product

If Π is cuspidal and $H^i(\mathfrak{gl}(n), U(n); \Pi_\infty \otimes W) \neq 0$ for some finite dimensional representation *W* then the lowest degree *i* is $b_n = \frac{n(n-1)}{2}$ and dim $H^{b_n} = 1$.

Now $b_n + b_{n-1} = (n-1)^2 = \dim G'(\mathbb{R})/U(n-1) = \dim_K \tilde{S}_{n-1}$, where

$$_{K}\tilde{S}_{n-1}=G'(\mathcal{K})\backslash G'(\mathbf{A})/U(n-1)\times K,\ K\subset G'(\mathbf{A}_{f}).$$

Thus the expression $\phi(\iota(g'))\phi'(g')$ is a top degree differential $\omega_{\phi} \cup \omega_{\phi'}$ on $_{K}\tilde{S}_{n-1}$ for appropriate choice of ϕ , ϕ' and the JPSS integral is its image in top-degree compactly-supported cohomology.

イロト 不得 トイヨト イヨト 二日

The cup product

If Π is cuspidal and $H^i(\mathfrak{gl}(n), U(n); \Pi_\infty \otimes W) \neq 0$ for some finite dimensional representation *W* then the lowest degree *i* is $b_n = \frac{n(n-1)}{2}$ and dim $H^{b_n} = 1$.

Now $b_n + b_{n-1} = (n-1)^2 = \dim G'(\mathbb{R})/U(n-1) = \dim_K \tilde{S}_{n-1}$, where

$$_{K}\widetilde{S}_{n-1} = G'(\mathcal{K}) \setminus G'(\mathbf{A}) / U(n-1) \times K, \ K \subset G'(\mathbf{A}_{f}).$$

Thus the expression $\phi(\iota(g'))\phi'(g')$ is a top degree differential $\omega_{\phi} \cup \omega_{\phi'}$ on $_K \tilde{S}_{n-1}$ for appropriate choice of ϕ, ϕ' and the JPSS integral is its image in top-degree compactly-supported cohomology.

イロト 不得 とくき とくき とうき

The cup product

If Π is cuspidal and $H^i(\mathfrak{gl}(n), U(n); \Pi_\infty \otimes W) \neq 0$ for some finite dimensional representation *W* then the lowest degree *i* is $b_n = \frac{n(n-1)}{2}$ and dim $H^{b_n} = 1$.

Now $b_n + b_{n-1} = (n-1)^2 = \dim G'(\mathbb{R})/U(n-1) = \dim_K \tilde{S}_{n-1}$, where

$$_{K}\widetilde{S}_{n-1} = G'(\mathcal{K}) \setminus G'(\mathbf{A}) / U(n-1) \times K, \ K \subset G'(\mathbf{A}_{f}).$$

Thus the expression $\phi(\iota(g'))\phi'(g')$ is a top degree differential $\omega_{\phi} \cup \omega_{\phi'}$ on $_K \tilde{S}_{n-1}$ for appropriate choice of ϕ, ϕ' and the JPSS integral is its image in top-degree compactly-supported cohomology.

イロト 不得 とくき とくき とうき

Assume

Hypotheses (Good Position Hypotheses)

• Π'_{∞} tempered, $H^{b_{n-1}}(\mathfrak{gl}(n-1), U(n-1); \Pi'_{\infty} \otimes W') \neq 0.$

◎ $Hom_{\mathbb{C}}(W \otimes W', \mathbb{C}) \neq 0$ (in which case the space is 1-dimensional.

Otherwise the cup product vanishes.

The JPSS integral has an Euler product: if *S* is the (finite) set of archimedean and ramified primes, then

$$Z(s,\phi,\phi') = \prod_{\nu} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) = \prod_{\nu \notin S} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) \times L^{S}(s,\Pi_{\nu},\Pi'_{\nu}).$$

Assume

Hypotheses (Good Position Hypotheses)

- $\ \, {\Pi}'_{\infty} \ tempered, \ H^{b_{n-1}}(\mathfrak{gl}(n-1), U(n-1); \Pi'_{\infty} \otimes W') \neq 0.$
- *Q* Hom_ℂ($W \otimes W', ℂ$) ≠ 0 (in which case the space is 1-dimensional.

Otherwise the cup product vanishes.

The JPSS integral has an Euler product: if *S* is the (finite) set of archimedean and ramified primes, then

$$Z(s,\phi,\phi') = \prod_{\nu} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) = \prod_{\nu \notin S} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) \times L^{S}(s,\Pi_{\nu},\Pi'_{\nu}).$$

Assume

Hypotheses (Good Position Hypotheses)

- $\ \, {\Pi}'_{\infty} \ tempered, \ H^{b_{n-1}}(\mathfrak{gl}(n-1), U(n-1); \Pi'_{\infty} \otimes W') \neq 0.$
- *Q* Hom_ℂ($W \otimes W', ℂ$) ≠ 0 (in which case the space is 1-dimensional.

Otherwise the cup product vanishes.

The JPSS integral has an Euler product: if *S* is the (finite) set of archimedean and ramified primes, then

$$Z(s,\phi,\phi') = \prod_{\nu} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) = \prod_{\nu \notin S} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) \times L^{S}(s,\Pi_{\nu},\Pi'_{\nu}).$$

Assume

Hypotheses (Good Position Hypotheses)

- $\ \, {\Pi}'_{\infty} \ tempered, \ H^{b_{n-1}}(\mathfrak{gl}(n-1), U(n-1); \Pi'_{\infty} \otimes W') \neq 0.$
- *●* $Hom_{\mathbb{C}}(W \otimes W', \mathbb{C}) \neq 0$ (in which case the space is 1-dimensional.

Otherwise the cup product vanishes.

The JPSS integral has an Euler product: if S is the (finite) set of archimedean and ramified primes, then

$$Z(s,\phi,\phi') = \prod_{\nu} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) = \prod_{\nu \notin S} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) \times L^{S}(s,\Pi_{\nu},\Pi'_{\nu}).$$

Assume

Hypotheses (Good Position Hypotheses)

- Π'_{∞} tempered, $H^{b_{n-1}}(\mathfrak{gl}(n-1), U(n-1); \Pi'_{\infty} \otimes W') \neq 0.$
- *●* $Hom_{\mathbb{C}}(W \otimes W', \mathbb{C}) \neq 0$ (in which case the space is 1-dimensional.

Otherwise the cup product vanishes.

The JPSS integral has an Euler product: if *S* is the (finite) set of archimedean and ramified primes, then

$$Z(s,\phi,\phi') = \prod_{\nu} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) = \prod_{\nu \notin S} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) \times L^{S}(s,\Pi_{\nu},\Pi'_{\nu}).$$

Assume

Hypotheses (Good Position Hypotheses)

- $\ \, {\Pi}'_{\infty} \ tempered, \ H^{b_{n-1}}(\mathfrak{gl}(n-1), U(n-1); \Pi'_{\infty} \otimes W') \neq 0.$
- *●* $Hom_{\mathbb{C}}(W \otimes W', \mathbb{C}) \neq 0$ (in which case the space is 1-dimensional.

Otherwise the cup product vanishes.

The JPSS integral has an Euler product: if *S* is the (finite) set of archimedean and ramified primes, then

$$Z(s,\phi,\phi') = \prod_{\nu} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) = \prod_{\nu \notin S} Z_{\nu}(s,\phi_{\nu},\phi'_{\nu}) \times L^{S}(s,\Pi_{\nu},\Pi'_{\nu}).$$

Rationality

Rankin-Selberg L-function Analytic periods Motivic periods

 \Rightarrow relation between $L(s_0, \Pi, \Pi')$ and $Tr[\omega_{\phi} \cup \omega_{\phi'}]$ for s_0 critical.

 ϕ, ϕ' cohomologically rational :

 $\Rightarrow Tr[\omega_{\phi} \cup \omega_{\phi'}] \in \overline{\mathbb{Q}}.$

 ϕ,ϕ' Whittaker rational (Fourier coefficients in $\overline{\mathbb{Q}})$:

 $\Rightarrow Z(s_0, \phi, \phi') \sim L(s_0, \Pi, \Pi')$ for critical s_0

Factors of proportionality in \mathbb{C}^{\times} , well-defined up to $\overline{\mathbb{Q}}$ -multiples, relate these two $\overline{\mathbb{Q}}$ -structures: call them $p(\Pi)$ and $p(\Pi')$. Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

Rationality

 \Rightarrow relation between $L(s_0, \Pi, \Pi')$ and $Tr[\omega_{\phi} \cup \omega_{\phi'}]$ for s_0 critical. ϕ, ϕ' cohomologically rational :

 $\Rightarrow Tr[\omega_{\phi} \cup \omega_{\phi'}] \in \overline{\mathbb{Q}}.$

 ϕ, ϕ' Whittaker rational (Fourier coefficients in $\overline{\mathbb{Q}}$) :

 $\Rightarrow Z(s_0, \phi, \phi') \sim L(s_0, \Pi, \Pi')$ for critical s_0

Factors of proportionality in \mathbb{C}^{\times} , well-defined up to $\overline{\mathbb{Q}}$ -multiples, relate these two $\overline{\mathbb{Q}}$ -structures: call them $p(\Pi)$ and $p(\Pi')$. Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

Rationality

 \Rightarrow relation between $L(s_0, \Pi, \Pi')$ and $Tr[\omega_{\phi} \cup \omega_{\phi'}]$ for s_0 critical. ϕ, ϕ' cohomologically rational :

$$\Rightarrow Tr[\omega_{\phi} \cup \omega_{\phi'}] \in \overline{\mathbb{Q}}.$$

 ϕ, ϕ' Whittaker rational (Fourier coefficients in $\overline{\mathbb{Q}}$): $\Rightarrow Z(s_0, \phi, \phi') \sim L(s_0, \Pi, \Pi')$ for critical s_0

Factors of proportionality in \mathbb{C}^{\times} , well-defined up to $\overline{\mathbb{Q}}$ -multiples, relate these two $\overline{\mathbb{Q}}$ -structures: call them $p(\Pi)$ and $p(\Pi')$. Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

Rationality

 \Rightarrow relation between $L(s_0, \Pi, \Pi')$ and $Tr[\omega_{\phi} \cup \omega_{\phi'}]$ for s_0 critical. ϕ, ϕ' cohomologically rational :

$$\Rightarrow Tr[\omega_{\phi} \cup \omega_{\phi'}] \in \overline{\mathbb{Q}}.$$

 ϕ, ϕ' Whittaker rational (Fourier coefficients in $\overline{\mathbb{Q}}$) :

 $\Rightarrow Z(s_0, \phi, \phi') \sim L(s_0, \Pi, \Pi')$ for critical s_0

Factors of proportionality in \mathbb{C}^{\times} , well-defined up to $\overline{\mathbb{Q}}$ -multiples, relate these two $\overline{\mathbb{Q}}$ -structures: call them $p(\Pi)$ and $p(\Pi')$. Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

$$L(s_0,\Pi,\Pi') \sim p_{\infty}p(\Pi)p(\Pi').$$

Rationality

 \Rightarrow relation between $L(s_0, \Pi, \Pi')$ and $Tr[\omega_{\phi} \cup \omega_{\phi'}]$ for s_0 critical. ϕ, ϕ' cohomologically rational :

$$\Rightarrow Tr[\omega_{\phi} \cup \omega_{\phi'}] \in \overline{\mathbb{Q}}.$$

 ϕ, ϕ' Whittaker rational (Fourier coefficients in $\overline{\mathbb{Q}}$) :

 $\Rightarrow Z(s_0, \phi, \phi') \sim L(s_0, \Pi, \Pi')$ for critical s_0

Factors of proportionality in \mathbb{C}^{\times} , well-defined up to $\overline{\mathbb{Q}}$ -multiples, relate these two $\overline{\mathbb{Q}}$ -structures: call them $p(\Pi)$ and $p(\Pi')$. Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

$$L(s_0,\Pi,\Pi') \sim p_{\infty}p(\Pi)p(\Pi').$$

Rationality

 \Rightarrow relation between $L(s_0, \Pi, \Pi')$ and $Tr[\omega_{\phi} \cup \omega_{\phi'}]$ for s_0 critical. ϕ, ϕ' cohomologically rational :

$$\Rightarrow Tr[\omega_{\phi} \cup \omega_{\phi'}] \in \overline{\mathbb{Q}}.$$

 ϕ, ϕ' Whittaker rational (Fourier coefficients in $\overline{\mathbb{Q}}$) :

 $\Rightarrow Z(s_0, \phi, \phi') \sim L(s_0, \Pi, \Pi')$ for critical s_0

Factors of proportionality in \mathbb{C}^{\times} , well-defined up to $\overline{\mathbb{Q}}$ -multiples, relate these two $\overline{\mathbb{Q}}$ -structures: call them $p(\Pi)$ and $p(\Pi')$. Then

Theorem (Mahnkopf, Raghuram et al., Grobner-H)

$$L(s_0,\Pi,\Pi') \sim p_{\infty}p(\Pi)p(\Pi').$$

Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)

 $\Pi^{\vee} \simeq \Pi^{c}, \Pi^{\prime,\vee} \simeq \Pi^{\prime,c}$, where ^c is the action of Galois conjugation.

B.-Y. Sun has shown that the complex number $p_{\infty} \neq 0$ under the Good Position Hypotheses. Lin Jie has used period relations (see below) to identify p_{∞} as a power of π , up to algebraic factors.

But what is the relation of $p(\Pi)$ to algebraic geometry, i.e. to $c^+(M)$, where $M = M(\Pi)$ is a motive attached to Π ?

(4月) (4日) (日)

Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)

 $\Pi^{\vee} \simeq \Pi^{c}, \Pi^{\prime,\vee} \simeq \Pi^{\prime,c}$, where c is the action of Galois conjugation.

B.-Y. Sun has shown that the complex number $p_{\infty} \neq 0$ under the Good Position Hypotheses. Lin Jie has used period relations (see below) to identify p_{∞} as a power of π , up to algebraic factors.

But what is the relation of $p(\Pi)$ to algebraic geometry, i.e. to $c^+(M)$, where $M = M(\Pi)$ is a motive attached to Π ?

イロト イポト イラト イラト

Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)

 $\Pi^{\vee} \simeq \Pi^{c}, \Pi^{\prime,\vee} \simeq \Pi^{\prime,c}$, where c is the action of Galois conjugation.

B.-Y. Sun has shown that the complex number $p_{\infty} \neq 0$ under the Good Position Hypotheses. Lin Jie has used period relations (see below) to identify p_{∞} as a power of π , up to algebraic factors.

But what is the relation of $p(\Pi)$ to algebraic geometry, i.e. to $c^+(M)$, where $M = M(\Pi)$ is a motive attached to Π ?

イロト イポト イラト イラト

Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)

 $\Pi^{\vee} \simeq \Pi^{c}, \Pi^{\prime,\vee} \simeq \Pi^{\prime,c}$, where ^c is the action of Galois conjugation.

B.-Y. Sun has shown that the complex number $p_{\infty} \neq 0$ under the Good Position Hypotheses. Lin Jie has used period relations (see below) to identify p_{∞} as a power of π , up to algebraic factors.

But what is the relation of $p(\Pi)$ to algebraic geometry, i.e. to $c^+(M)$, where $M = M(\Pi)$ is a motive attached to Π ?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Archimedean factors

We assume

Hypotheses (Polarization Hypothesis)

 $\Pi^{\vee} \simeq \Pi^{c}, \Pi^{\prime,\vee} \simeq \Pi^{\prime,c}$, where ^c is the action of Galois conjugation.

B.-Y. Sun has shown that the complex number $p_{\infty} \neq 0$ under the Good Position Hypotheses. Lin Jie has used period relations (see below) to identify p_{∞} as a power of π , up to algebraic factors.

But what is the relation of $p(\Pi)$ to algebraic geometry, i.e. to $c^+(M)$, where $M = M(\Pi)$ is a motive attached to Π ?

・ロト ・ 同ト ・ ヨト ・ ヨト

Shahidi's formula

Suppose $\Pi' = \Pi_1 \times \cdots \times \Pi_r$, Π_i on $GL(n_i)$, $\sum_i n_i = n - 1$.

Theorem (Shahidi, essentially)

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

Also, if $n_i = 1$, then $p(\Pi_i) \sim 1$.

In Grobner-H. this is applied when each $n_i = 1$ and the $\Pi_i = \chi_i$ are algebraic Hecke characters. Then

$$L(1, \Pi_i \otimes \Pi_j^{\vee}) = L(1, \chi_i/\chi_j) = p(\chi_i/\chi_j)$$

is a period of a CM abelian variety (Damarell, Shimura, Blasius). Thus $p(\Pi')$ is a product of CM periods (known quantities).

イロト 不得 とくき とくき とうき

Shahidi's formula

Suppose $\Pi' = \Pi_1 \times \cdots \times \Pi_r$, Π_i on $GL(n_i)$, $\sum_i n_i = n - 1$.

Theorem (Shahidi, essentially)

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

Also, if $n_i = 1$, then $p(\Pi_i) \sim 1$.

In Grobner-H. this is applied when each $n_i = 1$ and the $\Pi_i = \chi_i$ are algebraic Hecke characters. Then

$$L(1, \Pi_i \otimes \Pi_j^{\vee}) = L(1, \chi_i/\chi_j) = p(\chi_i/\chi_j)$$

is a period of a CM abelian variety (Damarell, Shimura, Blasius). Thus $p(\Pi')$ is a product of CM periods (known quantities).

・ロト ・ 得 ト ・ ヨ ト ・ ヨ

Shahidi's formula

Suppose $\Pi' = \Pi_1 \times \cdots \times \Pi_r$, Π_i on $GL(n_i)$, $\sum_i n_i = n - 1$.

Theorem (Shahidi, essentially)

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

Also, if $n_i = 1$, then $p(\Pi_i) \sim 1$.

In Grobner-H. this is applied when each $n_i = 1$ and the $\Pi_i = \chi_i$ are algebraic Hecke characters. Then

$$L(1, \Pi_i \otimes \Pi_j^{\vee}) = L(1, \chi_i/\chi_j) = p(\chi_i/\chi_j)$$

is a period of a CM abelian variety (Damarell, Shimura, Blasius). Thus $p(\Pi')$ is a product of CM periods (known quantities).

イロト 不得 とくき とくき とうき

Shahidi's formula

Suppose $\Pi' = \Pi_1 \times \cdots \times \Pi_r$, Π_i on $GL(n_i)$, $\sum_i n_i = n - 1$.

Theorem (Shahidi, essentially)

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

Also, if
$$n_i = 1$$
, then $p(\Pi_i) \sim 1$.

In Grobner-H. this is applied when each $n_i = 1$ and the $\Pi_i = \chi_i$ are algebraic Hecke characters. Then

$$L(1, \Pi_i \otimes \Pi_j^{\vee}) = L(1, \chi_i/\chi_j) = p(\chi_i/\chi_j)$$

is a period of a CM abelian variety (Damarell, Shimura, Blasius). Thus $p(\Pi')$ is a product of CM periods (known quantities).

・ロト ・ 得 ト ・ ヨ ト ・ ヨ

Shahidi's formula

Suppose $\Pi' = \Pi_1 \times \cdots \times \Pi_r$, Π_i on $GL(n_i)$, $\sum_i n_i = n - 1$.

Theorem (Shahidi, essentially)

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

Also, if
$$n_i = 1$$
, then $p(\Pi_i) \sim 1$.

In Grobner-H. this is applied when each $n_i = 1$ and the $\Pi_i = \chi_i$ are algebraic Hecke characters. Then

$$L(1,\Pi_i\otimes\Pi_j^{\vee})=L(1,\chi_i/\chi_j)=p(\chi_i/\chi_j)$$

is a period of a CM abelian variety (Damarell, Shimura, Blasius). Thus $p(\Pi')$ is a product of CM periods (known quantities).

・ロト ・ 得 ト ・ ヨ ト ・ ヨ

Shahidi's formula

Suppose $\Pi' = \Pi_1 \times \cdots \times \Pi_r$, Π_i on $GL(n_i)$, $\sum_i n_i = n - 1$.

Theorem (Shahidi, essentially)

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

Also, if
$$n_i = 1$$
, then $p(\Pi_i) \sim 1$.

In Grobner-H. this is applied when each $n_i = 1$ and the $\Pi_i = \chi_i$ are algebraic Hecke characters. Then

$$L(1,\Pi_i\otimes\Pi_j^{\vee})=L(1,\chi_i/\chi_j)=p(\chi_i/\chi_j)$$

is a period of a CM abelian variety (Damarell, Shimura, Blasius). Thus $p(\Pi')$ is a product of CM periods (known quantities).

ロトメ得トメラトメラト・ラ

On the other hand, the polarization hypothesis implies

- Each of Π, Π' descends to holomorphic representations π_a, π_b' of unitary groups U(a, n a), U(b, n 1 b) for all a, b [some local hypotheses may be necessary]
- One Deligne period c⁺(M(Π) ⊗ M(Π')) has a simplified expression [see below]

Concretely, this means that for each *a* there is a holomorphic modular form $f_a \in \pi_a$ on U(a, n - a) with arithmetic normalization such that $L(s, \pi_a) = L(s, \Pi)$ where $L(s, \pi_a)$ is the *standard L-function* (PS-Rallis).

Also, each χ_i descends to η_i on U(1).

イロト 不得 とくほ とくほう

On the other hand, the polarization hypothesis implies

- Each of Π, Π' descends to holomorphic representations π_a, π_b' of unitary groups U(a, n a), U(b, n 1 b) for all a, b [some local hypotheses may be necessary]
- The Deligne period c⁺(M(Π) ⊗ M(Π')) has a simplified expression [see below]

Concretely, this means that for each *a* there is a holomorphic modular form $f_a \in \pi_a$ on U(a, n - a) with arithmetic normalization such that $L(s, \pi_a) = L(s, \Pi)$ where $L(s, \pi_a)$ is the *standard L-function* (PS-Rallis).

Also, each χ_i descends to η_i on U(1).

イロト 不得 とくほ とくほう

On the other hand, the polarization hypothesis implies

- Each of Π, Π' descends to holomorphic representations π_a, π_b' of unitary groups U(a, n a), U(b, n 1 b) for all a, b [some local hypotheses may be necessary]
- The Deligne period c⁺(M(Π) ⊗ M(Π')) has a simplified expression [see below]

Concretely, this means that for each *a* there is a holomorphic modular form $f_a \in \pi_a$ on U(a, n - a) with arithmetic normalization such that $L(s, \pi_a) = L(s, \Pi)$ where $L(s, \pi_a)$ is the *standard L-function* (PS-Rallis).

Also, each χ_i descends to η_i on U(1).

イロト イポト イヨト イヨト

On the other hand, the polarization hypothesis implies

- Each of Π, Π' descends to holomorphic representations π_a, π_b' of unitary groups U(a, n a), U(b, n 1 b) for all a, b [some local hypotheses may be necessary]
- The Deligne period c⁺(M(Π) ⊗ M(Π')) has a simplified expression [see below]

Concretely, this means that for each *a* there is a holomorphic modular form $f_a \in \pi_a$ on U(a, n - a) with arithmetic normalization such that $L(s, \pi_a) = L(s, \Pi)$ where $L(s, \pi_a)$ is the *standard L-function* (PS-Rallis).

Also, each χ_i descends to η_i on U(1).

イロト 不得 トイヨト イヨト

On the other hand, the polarization hypothesis implies

- Each of Π, Π' descends to holomorphic representations π_a, π_b' of unitary groups U(a, n a), U(b, n 1 b) for all a, b [some local hypotheses may be necessary]
- The Deligne period c⁺(M(Π) ⊗ M(Π')) has a simplified expression [see below]

Concretely, this means that for each *a* there is a holomorphic modular form $f_a \in \pi_a$ on U(a, n - a) with arithmetic normalization such that $L(s, \pi_a) = L(s, \Pi)$ where $L(s, \pi_a)$ is the *standard L-function* (PS-Rallis).

Also, each χ_i descends to η_i on U(1).

イロト 不得 トイヨト イヨト

On the other hand, the polarization hypothesis implies

- Each of Π, Π' descends to holomorphic representations π_a, π_b' of unitary groups U(a, n a), U(b, n 1 b) for all a, b [some local hypotheses may be necessary]
- The Deligne period c⁺(M(Π) ⊗ M(Π')) has a simplified expression [see below]

Concretely, this means that for each *a* there is a holomorphic modular form $f_a \in \pi_a$ on U(a, n - a) with arithmetic normalization such that $L(s, \pi_a) = L(s, \Pi)$ where $L(s, \pi_a)$ is the *standard L-function* (PS-Rallis).

Also, each χ_i descends to η_i on U(1).

イロト 不得 とく ヨ とく ヨ と

Introduction Rankin-Selberg and cohomology Comparison with Deligne's conjecture Rankin-Selberg L-function: Analytic periods Motivic periods

Relation to unitary Shimura varieties, 2

If $\Pi' = \chi_1 \times \cdots \times \chi_{n-1}$ then

$$L(s,\Pi\times\Pi')=\prod_{i}L(s,\Pi\otimes\chi_{i}\circ\det)=\prod_{i}L(s,\pi_{a}\otimes\eta_{i}\circ\det), \ 0\leq a\leq n-1$$

In the 1990s, MH showed that, for s_0 critical and η_i fixed, there exists $a = a(\Pi, \chi_i)$ such that

$$L(s_0, \pi_a \otimes \eta_i \circ \det) \sim \pi^{m(s_0)} Q_a(\Pi) \cdot d_a(\eta_i).$$

for some CM period $d_a(\eta_i)$ and some integer $m(s_0)$, where

$$Q_a(\Pi) =$$

(Petersson norm of an arithmetically normalized holomorphic modular form).

Introduction Rankin-Selberg and cohomology Comparison with Deligne's conjecture Rankin-Selberg L-functions Analytic periods Motivic periods

Relation to unitary Shimura varieties, 2

If
$$\Pi' = \chi_1 \times \cdots \times \chi_{n-1}$$
 then

$$L(s,\Pi\times\Pi')=\prod_{i}L(s,\Pi\otimes\chi_{i}\circ\det)=\prod_{i}L(s,\pi_{a}\otimes\eta_{i}\circ\det), \ 0\leq a\leq n-1$$

In the 1990s, MH showed that, for s_0 critical and η_i fixed, there exists $a = a(\Pi, \chi_i)$ such that

$$L(s_0, \pi_a \otimes \eta_i \circ \det) \sim \pi^{m(s_0)} Q_a(\Pi) \cdot d_a(\eta_i).$$

for some CM period $d_a(\eta_i)$ and some integer $m(s_0)$, where

$$Q_a(\Pi) =$$

(Petersson norm of an arithmetically normalized holomorphic modular form).

Rankin-Selberg L-functions Analytic periods Motivic periods

Relation to unitary Shimura varieties, 2

If
$$\Pi' = \chi_1 \times \cdots \times \chi_{n-1}$$
 then

$$L(s,\Pi\times\Pi')=\prod_{i}L(s,\Pi\otimes\chi_{i}\circ\det)=\prod_{i}L(s,\pi_{a}\otimes\eta_{i}\circ\det),\ 0\leq a\leq n-1$$

In the 1990s, MH showed that, for s_0 critical and η_i fixed, there exists $a = a(\Pi, \chi_i)$ such that

 $L(s_0, \pi_a \otimes \eta_i \circ \det) \sim \pi^{m(s_0)} Q_a(\Pi) \cdot d_a(\eta_i).$

for some CM period $d_a(\eta_i)$ and some integer $m(s_0)$, where

$$Q_a(\Pi) =$$

Rankin-Selberg L-functions Analytic periods Motivic periods

Relation to unitary Shimura varieties, 2

If
$$\Pi' = \chi_1 \times \cdots \times \chi_{n-1}$$
 then

$$L(s,\Pi\times\Pi')=\prod_{i}L(s,\Pi\otimes\chi_{i}\circ\det)=\prod_{i}L(s,\pi_{a}\otimes\eta_{i}\circ\det),\ 0\leq a\leq n-1$$

In the 1990s, MH showed that, for s_0 critical and η_i fixed, there exists $a = a(\Pi, \chi_i)$ such that

$$L(s_0, \pi_a \otimes \eta_i \circ \det) \sim \pi^{m(s_0)} Q_a(\Pi) \cdot d_a(\eta_i).$$

for some CM period $d_a(\eta_i)$ and some integer $m(s_0)$, where

$$Q_a(\Pi) =$$

If
$$\Pi' = \chi_1 \times \cdots \times \chi_{n-1}$$
 then

$$L(s,\Pi\times\Pi')=\prod_{i}L(s,\Pi\otimes\chi_{i}\circ\det)=\prod_{i}L(s,\pi_{a}\otimes\eta_{i}\circ\det),\ 0\leq a\leq n-1$$

In the 1990s, MH showed that, for s_0 critical and η_i fixed, there exists $a = a(\Pi, \chi_i)$ such that

$$L(s_0, \pi_a \otimes \eta_i \circ \det) \sim \pi^{m(s_0)} Q_a(\Pi) \cdot d_a(\eta_i).$$

for some CM period $d_a(\eta_i)$ and some integer $m(s_0)$, where

$$Q_a(\Pi) =$$

If
$$\Pi' = \chi_1 \times \cdots \times \chi_{n-1}$$
 then

$$L(s,\Pi\times\Pi')=\prod_{i}L(s,\Pi\otimes\chi_{i}\circ\det)=\prod_{i}L(s,\pi_{a}\otimes\eta_{i}\circ\det),\ 0\leq a\leq n-1$$

In the 1990s, MH showed that, for s_0 critical and η_i fixed, there exists $a = a(\Pi, \chi_i)$ such that

$$L(s_0, \pi_a \otimes \eta_i \circ \det) \sim \pi^{m(s_0)} Q_a(\Pi) \cdot d_a(\eta_i).$$

for some CM period $d_a(\eta_i)$ and some integer $m(s_0)$, where

$$Q_a(\Pi) =$$

The CM periods cancel, and we find

Theorem (Grobner-H., Lin)

Suppose $L(s, \Pi \otimes \chi_i)$ has a non-vanishing critical value for each *i*. (automatic if Π is sufficiently regular). Then

$$p(\Pi) \sim \pi^{\mu(n)} \prod_{a=1}^{n-1} \mathcal{Q}_a(\Pi)$$

for some explicit integer $\mu(n)$ that depends only on n.

The CM periods cancel, and we find

Theorem (Grobner-H., Lin)

Suppose $L(s, \Pi \otimes \chi_i)$ has a non-vanishing critical value for each *i*. (automatic if Π is sufficiently regular). Then

$$p(\Pi) \sim \pi^{\mu(n)} \prod_{a=1}^{n-1} Q_a(\Pi)$$

for some explicit integer $\mu(n)$ that depends only on n.

Rankin-Selberg L-functions Analytic periods Motivic periods

Question for analytic number theorists

Question

Can the regularity assumption be relaxed?

This comes down to a question in analytic number theory: can one arrange that, after twisting by a character of finite order, the *central* value of the *L*-function doesn't vanish?

Question for analytic number theorists

Question

Can the regularity assumption be relaxed?

This comes down to a question in analytic number theory: can one arrange that, after twisting by a character of finite order, the *central* value of the *L*-function doesn't vanish?

(4月) (4日) (日)

For Π' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming sufficiently regularity, we have (for some explicit integer $\mu(n, n - 1)$)

$$L(s_0,\Pi \times \Pi') \sim \pi^{\mu(n,n-1)} \prod_{a=1}^{n-1} \mathcal{Q}_a(\Pi) \prod_{b=1}^{n-2} \mathcal{Q}_b(\Pi').$$

On the other hand, under the same Hypotheses,

$$c^+(s_0, M(\Pi) \otimes M(\Pi')) \sim \pi^{\mu(n, n-1)} \prod_{a=1}^{n-1} Q_{\leq a}(M(\Pi)) \prod_{b=1}^{n-2} Q_{\leq b}(M(\Pi'))$$

For Π' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming sufficiently regularity, we have (for some explicit integer $\mu(n, n - 1)$)

$$L(s_0,\Pi \times \Pi') \sim \pi^{\mu(n,n-1)} \prod_{a=1}^{n-1} Q_a(\Pi) \prod_{b=1}^{n-2} Q_b(\Pi').$$

On the other hand, under the same Hypotheses,

$$c^+(s_0, M(\Pi) \otimes M(\Pi')) \sim \pi^{\mu(n, n-1)} \prod_{a=1}^{n-1} Q_{\leq a}(M(\Pi)) \prod_{b=1}^{n-2} Q_{\leq b}(M(\Pi'))$$

For Π' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming sufficiently regularity, we have (for some explicit integer $\mu(n, n - 1)$)

$$L(s_0, \Pi \times \Pi') \sim \pi^{\mu(n, n-1)} \prod_{a=1}^{n-1} Q_a(\Pi) \prod_{b=1}^{n-2} Q_b(\Pi').$$

On the other hand, under the same Hypotheses,

$$c^+(s_0, M(\Pi) \otimes M(\Pi')) \sim \pi^{\mu(n, n-1)} \prod_{a=1}^{n-1} Q_{\leq a}(M(\Pi)) \prod_{b=1}^{n-2} Q_{\leq b}(M(\Pi'))$$

For Π' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming sufficiently regularity, we have (for some explicit integer $\mu(n, n - 1)$)

$$L(s_0, \Pi \times \Pi') \sim \pi^{\mu(n,n-1)} \prod_{a=1}^{n-1} Q_a(\Pi) \prod_{b=1}^{n-2} Q_b(\Pi').$$

On the other hand, under the same Hypotheses,

$$c^+(s_0, M(\Pi) \otimes M(\Pi')) \sim \pi^{\mu(n, n-1)} \prod_{a=1}^{n-1} Q_{\leq a}(M(\Pi)) \prod_{b=1}^{n-2} Q_{\leq b}(M(\Pi'))$$

For Π' cuspidal rather than Eisenstein, we find

Theorem (Grobner-H., Lin)

Under the Polarization and Good Position Hypotheses, and assuming sufficiently regularity, we have (for some explicit integer $\mu(n, n - 1)$)

$$L(s_0, \Pi \times \Pi') \sim \pi^{\mu(n, n-1)} \prod_{a=1}^{n-1} Q_a(\Pi) \prod_{b=1}^{n-2} Q_b(\Pi').$$

On the other hand, under the same Hypotheses,

$$c^+(s_0, M(\Pi) \otimes M(\Pi')) \sim \pi^{\mu(n,n-1)} \prod_{a=1}^{n-1} Q_{\leq a}(M(\Pi)) \prod_{b=1}^{n-2} Q_{\leq b}(M(\Pi'))$$

Results for Good Position General results

Automorphic periods as motivic periods

There is a plausible narrative that identifies $Q_a(\Pi) \sim Q_{\leq a}(M(\Pi))$ (assuming a reasonable theory of motives).

And the computation on the last slide of $c^+(s_0, M(\Pi) \otimes M(\Pi'))$ can be carried out without the Good Position Hypothesis.

Results for Good Position General results

Automorphic periods as motivic periods

There is a plausible narrative that identifies $Q_a(\Pi) \sim Q_{\leq a}(M(\Pi))$ (assuming a reasonable theory of motives).

And the computation on the last slide of $c^+(s_0, M(\Pi) \otimes M(\Pi'))$ can be carried out without the Good Position Hypothesis.

Results for Good Position General results

Automorphic periods as motivic periods

- There is a plausible narrative that identifies $Q_a(\Pi) \sim Q_{\leq a}(M(\Pi))$ (assuming a reasonable theory of motives).
- And the computation on the last slide of $c^+(s_0, M(\Pi) \otimes M(\Pi'))$ can be carried out without the Good Position Hypothesis.

・ロト ・ 同ト ・ ヨト ・ ヨト

Deligne periods without the Good Position Hypothesis

Proposition (MH,Lin)

Let Π_1 cuspidal for $GL(n_1)$, Π_2 cuspidal for $GL(n_2)$, $n_2 < n_1$. Assume Π_1 and Π_2 satisfy the Polarization Hypothesis and let s_0 be critical for $L(s, M(\Pi_1) \otimes M(\Pi_2))$.

Then there are integers $\mu(n_1, n_2)$ and exponents $s(\Pi_{1,\infty}, \Pi_{2,\infty}, a), s'(\Pi_{2,\infty}, \Pi_{1,\infty}, b)$ such that

$c^+(s_0, M(\Pi_1) \otimes M(\Pi_2)) \sim$

$$\pi^{\mu(n_1,n_2)} \prod_{a=1}^{n_1-1} \mathcal{Q}_{\leq a}(M(\Pi_1))^{s(\Pi_{1,\infty},\Pi_{2,\infty},a)} \prod_{b=1}^{n_2-1} \mathcal{Q}_{\leq b}(M(\Pi_2))^{s'(\Pi_{2,\infty},\Pi_{1,\infty},b)}$$

The $Q_{\leq a}$ and $Q_{\leq b}$ are as in the previous slide.

・ロト ・ 同ト ・ ヨト ・ ヨト

Deligne periods without the Good Position Hypothesis

Proposition (MH,Lin)

Let Π_1 cuspidal for $GL(n_1)$, Π_2 cuspidal for $GL(n_2)$, $n_2 < n_1$. Assume Π_1 and Π_2 satisfy the Polarization Hypothesis and let s_0 be critical for $L(s, M(\Pi_1) \otimes M(\Pi_2))$. Then there are integers $\mu(n_1, n_2)$ and exponents $s(\Pi_{1,\infty}, \Pi_{2,\infty}, a), s'(\Pi_{2,\infty}, \Pi_{1,\infty}, b)$ such that

$$c^{+}(s_{0}, M(\Pi_{1}) \otimes M(\Pi_{2})) \sim \\\pi^{\mu(n_{1}, n_{2})} \prod_{a=1}^{n_{1}-1} \mathcal{Q}_{\leq a}(M(\Pi_{1}))^{s(\Pi_{1,\infty}, \Pi_{2,\infty}, a)} \prod_{b=1}^{n_{2}-1} \mathcal{Q}_{\leq b}(M(\Pi_{2}))^{s'(\Pi_{2,\infty}, \Pi_{1,\infty}, b)}$$

The $Q_{\leq a}$ and $Q_{\leq b}$ are as in the previous slide.

Deligne periods without the Good Position Hypothesis

Proposition (MH,Lin)

Let Π_1 cuspidal for $GL(n_1)$, Π_2 cuspidal for $GL(n_2)$, $n_2 < n_1$. Assume Π_1 and Π_2 satisfy the Polarization Hypothesis and let s_0 be critical for $L(s, M(\Pi_1) \otimes M(\Pi_2))$. Then there are integers $\mu(n_1, n_2)$ and exponents $s(\Pi_{1,\infty}, \Pi_{2,\infty}, a), s'(\Pi_{2,\infty}, \Pi_{1,\infty}, b)$ such that

$$c^{+}(s_{0}, M(\Pi_{1}) \otimes M(\Pi_{2})) \sim \\\pi^{\mu(n_{1}, n_{2})} \prod_{a=1}^{n_{1}-1} Q_{\leq a}(M(\Pi_{1}))^{s(\Pi_{1,\infty}, \Pi_{2,\infty}, a)} \prod_{b=1}^{n_{2}-1} Q_{\leq b}(M(\Pi_{2}))^{s'(\Pi_{2,\infty}, \Pi_{1,\infty}, b)}$$

The $Q_{\leq a}$ and $Q_{\leq b}$ are as in the previous slide.

伺下 イヨト イヨト

Results for Good Position General results

New results of Lin

For any n₂ < n₁, under generalized Good Position Hypothesis, she can prove

$$L(s_0, \Pi_1 \times \Pi_2) \sim \pi^{\mu(n_1, n_2)} \prod_{a=1}^{n_1 - 1} Q_a(\Pi_1)^{s(\Pi_{1, \infty}, \Pi_{2, \infty}, a)} \prod_{b=1}^{n_2 - 1} Q_b(\Pi')^{s'(\Pi'_{\infty}, \Pi_{\infty}, b)}.$$

with same $\mu(n_1, n_2), s(\Pi_{\infty}, \Pi'_{\infty}, a), s'(\Pi'_{\infty}, \Pi_{\infty}, b)$.

- **②** Without Good Position Hypothesis, she proves this for $s_0 = 1$ using Shahidi's formula, for very regular Π_1, Π_2 .
- So For general CM fields, gets many distinct expressions for the same $L(s_0, \Pi_1 \times \Pi_2)$; implies *factorization* of $Q_a(\Pi)$ over real places.

Results for Good Position General results

New results of Lin

For any n₂ < n₁, under generalized Good Position Hypothesis, she can prove

$$L(s_0, \Pi_1 \times \Pi_2) \sim \pi^{\mu(n_1, n_2)} \prod_{a=1}^{n_1 - 1} Q_a(\Pi_1)^{s(\Pi_{1, \infty}, \Pi_{2, \infty}, a)} \prod_{b=1}^{n_2 - 1} Q_b(\Pi')^{s'(\Pi'_{\infty}, \Pi_{\infty}, b)}.$$

with same $\mu(n_1, n_2), s(\Pi_{\infty}, \Pi'_{\infty}, a), s'(\Pi'_{\infty}, \Pi_{\infty}, b).$

- **②** Without Good Position Hypothesis, she proves this for $s_0 = 1$ using Shahidi's formula, for very regular Π_1, Π_2 .
- For general CM fields, gets many distinct expressions for the same L(s₀, Π₁ × Π₂); implies *factorization* of Q_a(Π) over real places.

イロト 不得 トイヨト イヨト

Results for Good Position General results

New results of Lin

For any n₂ < n₁, under generalized Good Position Hypothesis, she can prove

$$L(s_0, \Pi_1 \times \Pi_2) \sim \pi^{\mu(n_1, n_2)} \prod_{a=1}^{n_1 - 1} Q_a(\Pi_1)^{s(\Pi_{1, \infty}, \Pi_{2, \infty}, a)} \prod_{b=1}^{n_2 - 1} Q_b(\Pi')^{s'(\Pi'_{\infty}, \Pi_{\infty}, b)}.$$

with same $\mu(n_1, n_2), s(\Pi_{\infty}, \Pi'_{\infty}, a), s'(\Pi'_{\infty}, \Pi_{\infty}, b)$.

- **Without Good Position Hypothesis, she proves this for** $s_0 = 1$ using Shahidi's formula, for very regular Π_1 , Π_2 .
- For general CM fields, gets many distinct expressions for the same L(s₀, Π₁ × Π₂); implies *factorization* of Q_a(Π) over real places.

Results for Good Position General results

New results of Lin

For any n₂ < n₁, under generalized Good Position Hypothesis, she can prove

$$L(s_0, \Pi_1 \times \Pi_2) \sim \pi^{\mu(n_1, n_2)} \prod_{a=1}^{n_1 - 1} Q_a(\Pi_1)^{s(\Pi_{1, \infty}, \Pi_{2, \infty}, a)} \prod_{b=1}^{n_2 - 1} Q_b(\Pi')^{s'(\Pi'_{\infty}, \Pi_{\infty}, b)}.$$

with same $\mu(n_1, n_2), s(\Pi_{\infty}, \Pi'_{\infty}, a), s'(\Pi'_{\infty}, \Pi_{\infty}, b)$.

- **②** Without Good Position Hypothesis, she proves this for $s_0 = 1$ using Shahidi's formula, for very regular Π_1 , Π_2 .
- So For general CM fields, gets many distinct expressions for the same $L(s_0, \Pi_1 \times \Pi_2)$; implies *factorization* of $Q_a(\Pi)$ over real places.

Results for Good Position General results

New results of Lin

For any n₂ < n₁, under generalized Good Position Hypothesis, she can prove

$$L(s_0, \Pi_1 \times \Pi_2) \sim \pi^{\mu(n_1, n_2)} \prod_{a=1}^{n_1 - 1} Q_a(\Pi_1)^{s(\Pi_{1, \infty}, \Pi_{2, \infty}, a)} \prod_{b=1}^{n_2 - 1} Q_b(\Pi')^{s'(\Pi'_{\infty}, \Pi_{\infty}, b)}.$$

with same $\mu(n_1, n_2), s(\Pi_{\infty}, \Pi'_{\infty}, a), s'(\Pi'_{\infty}, \Pi_{\infty}, b)$.

- **②** Without Good Position Hypothesis, she proves this for $s_0 = 1$ using Shahidi's formula, for very regular Π_1 , Π_2 .
- Sor general CM fields, gets many distinct expressions for the same L(s₀, Π₁ × Π₂); implies *factorization* of Q_a(Π) over real places.

Results for Good Position General results

New results of Lin

For any n₂ < n₁, under generalized Good Position Hypothesis, she can prove

$$L(s_0, \Pi_1 \times \Pi_2) \sim \pi^{\mu(n_1, n_2)} \prod_{a=1}^{n_1 - 1} Q_a(\Pi_1)^{s(\Pi_{1, \infty}, \Pi_{2, \infty}, a)} \prod_{b=1}^{n_2 - 1} Q_b(\Pi')^{s'(\Pi'_{\infty}, \Pi_{\infty}, b)}.$$

with same $\mu(n_1, n_2), s(\Pi_{\infty}, \Pi'_{\infty}, a), s'(\Pi'_{\infty}, \Pi_{\infty}, b)$.

- **②** Without Good Position Hypothesis, she proves this for $s_0 = 1$ using Shahidi's formula, for very regular Π_1 , Π_2 .
- So For general CM fields, gets many distinct expressions for the same $L(s_0, \Pi_1 \times \Pi_2)$; implies *factorization* of $Q_a(\Pi)$ over real places.

In the work with Grobner, Π is cuspidal and Π' is tempered Eisenstein, induced from a character of a Borel.

Shahidi's formula computes $p(\Pi')$ for any tempered Eisenstein class, with $\sum m_i = n - 1$:

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

To prove (1), Lin takes $n = n_1$, $m_1 = n_2$, $m_i = 1$, i > 1, choosing $\Pi' = \Pi_2 \times \chi_2 \cdots \times \chi_r$, so that Π and Π' are in good position.

(日)

In the work with Grobner, Π is cuspidal and Π' is tempered Eisenstein, induced from a character of a Borel.

Shahidi's formula computes $p(\Pi')$ for any tempered Eisenstein class, with $\sum m_i = n - 1$:

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_r) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_i \otimes \Pi_j^{\vee}).$$

To prove (1), Lin takes $n = n_1$, $m_1 = n_2$, $m_i = 1$, i > 1, choosing $\Pi' = \Pi_2 \times \chi_2 \cdots \times \chi_r$, so that Π and Π' are in good position.

イロト 不得 とくほ とくほ とう

In the work with Grobner, Π is cuspidal and Π' is tempered Eisenstein, induced from a character of a Borel.

Shahidi's formula computes $p(\Pi')$ for any tempered Eisenstein class, with $\sum m_i = n - 1$:

$$p(\Pi') \sim c_{\infty} \cdot \prod_{i=1}^{r} p(\Pi_{r}) \times \prod_{1 \leq i < j \leq r} L(1, \Pi_{i} \otimes \Pi_{j}^{\vee}).$$

To prove (1), Lin takes $n = n_1$, $m_1 = n_2$, $m_i = 1$, i > 1, choosing $\Pi' = \Pi_2 \times \chi_2 \cdots \times \chi_r$, so that Π and Π' are in good position.

To prove (2), she takes r = 2, $\Pi' = \Pi_1 \times \Pi_2^{\vee}$, and $n = n_1 + n_2 + 1$. Shahidi's formula gives an expression for $p(\Pi_1 \times \Pi_2^{\vee})$ on GL(n-1) in terms of $L(1, \Pi_1 \times \Pi_2)$.

Then she takes a sufficiently general cuspidal Π on GL(n) and shows that its contribution cancels, leaving only an expression for $L(1, \Pi_1 \times \Pi_2)$ in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct expressions for the same special value in terms of periods;this implies period relations (predicted by Tate Conjecture).

To prove (2), she takes r = 2, $\Pi' = \Pi_1 \times \Pi_2^{\vee}$, and $n = n_1 + n_2 + 1$. Shahidi's formula gives an expression for $p(\Pi_1 \times \Pi_2^{\vee})$ on GL(n-1) in terms of $L(1, \Pi_1 \times \Pi_2)$.

Then she takes a sufficiently general cuspidal Π on GL(n) and shows that its contribution cancels, leaving only an expression for $L(1, \Pi_1 \times \Pi_2)$ in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct expressions for the same special value in terms of periods;this implies period relations (predicted by Tate Conjecture).

イロト 不得 トイヨト イヨト

To prove (2), she takes r = 2, $\Pi' = \Pi_1 \times \Pi_2^{\vee}$, and $n = n_1 + n_2 + 1$. Shahidi's formula gives an expression for $p(\Pi_1 \times \Pi_2^{\vee})$ on GL(n-1) in terms of $L(1, \Pi_1 \times \Pi_2)$.

Then she takes a sufficiently general cuspidal Π on GL(n) and shows that its contribution cancels, leaving only an expression for $L(1, \Pi_1 \times \Pi_2)$ in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct expressions for the same special value in terms of periods;this implies period relations (predicted by Tate Conjecture).

(日)

To prove (2), she takes r = 2, $\Pi' = \Pi_1 \times \Pi_2^{\vee}$, and $n = n_1 + n_2 + 1$. Shahidi's formula gives an expression for $p(\Pi_1 \times \Pi_2^{\vee})$ on GL(n-1) in terms of $L(1, \Pi_1 \times \Pi_2)$.

Then she takes a sufficiently general cuspidal Π on GL(n) and shows that its contribution cancels, leaving only an expression for $L(1, \Pi_1 \times \Pi_2)$ in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct expressions for the same special value in terms of periods;this implies period relations (predicted by Tate Conjecture).

To prove (2), she takes r = 2, $\Pi' = \Pi_1 \times \Pi_2^{\vee}$, and $n = n_1 + n_2 + 1$. Shahidi's formula gives an expression for $p(\Pi_1 \times \Pi_2^{\vee})$ on GL(n-1) in terms of $L(1, \Pi_1 \times \Pi_2)$.

Then she takes a sufficiently general cuspidal Π on GL(n) and shows that its contribution cancels, leaving only an expression for $L(1, \Pi_1 \times \Pi_2)$ in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct expressions for the same special value in terms of periods; this implies period relations (predicted by Tate Conjecture).

(日)

To prove (2), she takes r = 2, $\Pi' = \Pi_1 \times \Pi_2^{\vee}$, and $n = n_1 + n_2 + 1$. Shahidi's formula gives an expression for $p(\Pi_1 \times \Pi_2^{\vee})$ on GL(n-1) in terms of $L(1, \Pi_1 \times \Pi_2)$.

Then she takes a sufficiently general cuspidal Π on GL(n) and shows that its contribution cancels, leaving only an expression for $L(1, \Pi_1 \times \Pi_2)$ in terms of motivic periods.

To prove (3), she observes that the proof of (2) gives many distinct expressions for the same special value in terms of periods; this implies period relations (predicted by Tate Conjecture).

イロト 不得 とくほ とくほ とう