ALGEBRAIC NUMBER THEORY W4043

Homework, week 10, due November 29

2. An arithmetic function is a function \(f : \mathbb{N} \to \mathbb{C} \). An arithmetic function \(f \) is multiplicative if \(f(ab) = f(a)f(b) \) whenever \(a \) and \(b \) are relatively prime. Suppose \(f \) and \(g \) are two arithmetic functions. Define the convolution

\[
(f * g)(n) = \sum_{d|n} f(d)g(n/d).
\]

(a) Let \(\tau(n) \) denote the number of integers dividing \(n \). Let \(1 \) be the function defined by \(1(n) = 1 \) for all \(n \). Show that \(1 * 1 = \tau \).

(b) Suppose \(f \) and \(g \) are multiplicative functions. Show that \(f * g \) is also multiplicative.

(c) Define the Möbius function \(\mu \) to be the unique multiplicative function such that \(\mu(1) = 1 \), \(\mu(p) = -1 \) for any prime \(p \), and \(\mu(n) = 0 \) if \(n \) is not square-free. Let \(f \) be the function \(f(n) = n \) for all \(n \). Compute \(f * \mu \).

(d) Define the von Mangoldt function \(\Lambda \) by \(\Lambda(1) = 1 \), \(\Lambda(p) = \log(p) \) if \(n = p^i \) for some prime \(p \), \(\Lambda(n) = 0 \) if \(n \) is not a prime power. Let

\[
D(s) = \sum_n \frac{\Lambda(n)}{n^s}.
\]

Show that \(D(s) \) converges absolutely for \(\text{Re}(s) > 1 \) and that, on the half plane \(\text{Re}(s) > 1 \), we have the equality

\[
D(s) = -\frac{\zeta'(s)}{\zeta(s)}
\]

where \(\zeta(s) = \sum_n \frac{1}{n^s} \) is the Riemann zeta function.