ALGEBRAIC NUMBER THEORY W4043

TAKE HOME FINAL, DUE DECEMBER 21, 2015

1. (a) Show that if $p \neq q$, then \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic as fields.

(b) Show that any field automorphism of \mathbb{Q}_p is continuous. Then show that the only automorphism of \mathbb{Q}_p is the identity.

2. We will construct number fields whose integer rings are not generated by 1, 2, or 3 elements.

(a) Let K be a number field, $[K : \mathbb{Q}] = n$, $\mathcal{O}_K \subset K$ its ring of integers. Suppose 2 splits completely in \mathcal{O}_K :

$$(2)\mathcal{O}_K = \prod_{i=1}^n \mathfrak{p}_i$$

where each \mathfrak{p}_i is a prime ideal. Show that $\mathcal{O}_K/(2)\mathcal{O}_K = \prod_{i=1}^n \mathbb{F}_2$.

(b) Let d be a positive integer. Show that there are exactly 2^d distinct ring homomorphisms

$$\mathbb{F}_2[X_1, X_2, \dots, X_d] \to \mathbb{F}_2.$$

Deduce that, in the notation of (a), if \mathcal{O}_K has d generators over \mathbb{Z} , then $[K:\mathbb{Q}] \leq 2^d$.

(3) Let ζ be a 151-th root of 1, $L = \mathbb{Q}(\zeta)$. Show that the cyclotomic field L contains a unique subfield K of degree 10 over \mathbb{Q} . (Check, but don't bother writing down, that 151 is a prime number.) Show that

$$2^{15} \equiv 1 \pmod{151}.$$

Conclude that \mathcal{O}_K has more than 3 generators over \mathbb{Z} .

3. (a) Which prime numbers can be written in the form $m^2 + mn + 2n^2$, with m and n non-negative integers? In how many ways? (You will need to use Minkowski's bound to show that a certain field has class number 1.) Which integers can be written in that form?

(b) Consider the series

$$D(s) = \sum_{\substack{m \ge 0, n \ge 0, (m,n) \ne (0,0)}} \frac{1}{(m^2 + mn + 2n^2)^s}$$

as a function of $s \in \mathbb{C}$. Determine the set of s for which D(s) converges absolutely. Does D(s) have an Euler product?

4. Let $d = \prod_{i=1}^{r} p_i$ be a product of distinct odd prime numbers, with $d \equiv 1 \pmod{4}$. Let $K = \mathbb{Q}(\sqrt{d})$, and for each *i*, let \mathfrak{p}_i be the unique prime

ideal in \mathcal{O}_K containing p_i . Show that there is an imaginary quadratic field L/\mathbb{Q} such that, for every i, the ideal $\mathfrak{p}_i \mathcal{O}_L \subset \mathcal{O}_L$ is a product of two distinct prime ideals.