
V2000: Notes for Week 1

Reading assignment

Dumas-McCarthy: (DM) Ch 0, Ch 1, sections 1 and 2
Daepp-Gorkin (DG): Ch 1,2,6
The online description of the course (at http://www.math.columbia.edu/~harris/

MathV2000.htm)

1. Statements (Propositions)

The first few days of the course are devoted to getting used to the language of
mathematics. Mathematical language is composed of sentences, which are called
statements (more formally proposition) to distinguish them from the sentences of
natural language. In order to qualify as a statement (a mathematical proposition), a
sentence must be either true or false. However, it is still a sentence constructed out
of words and symbols that can be interpreted as words.

Question 1.1. Which of these are statements? (adapted from DG)

(a) All the world’s a stage.
(b) Two plus three equals six.
(c) The number of students in the class is a positive integer.
(d) X + 3 = 0.
(e) Every sentence on this page is false.
(f) April is the cruelest month.

Much of analytic philosophy is concerned with distinguishing statements from sen-
tences with no meaningful truth value. This is not a course in philosophy; our goal
is to illustrate the use of sentences as mathematicians use them. So we will not be
contending with the ambiguity of sentences (a) and (f); instead, we will develop a
vocabulary of words and symbols whose terms are unambiguous. Integers and real
numbers will be part of this vocabulary (though the precise meaning of integers and
real numbers is also of great interest to philosophers). True and False will eventually
be used in a purely technical sense, but for the time being they will be used informally.

1.1. Operations with statements, propositional connectives. Given a state-
ment, you can make new statements by combining them.
¬P means NOT P (this has the opposite truth values to P ) – also written ∼ P
P ∧Q means P and Q,
P ∨Q means P or Q. (nonexclusive OR: P ∨Q is true if either P or Q or both are

true.)
P ⇒ Q means “P implies Q”.
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The symbols ¬,∧,∨,⇒ are the basic propositional connectives. These are studied
in more detail in subsequent weeks (see (DM), Chapter 3).

Exercise 1.2. Explain with a few examples why P ⇒ Q has the same meaning as
Q ∨ ¬P .

P ⇔ Q means “P is equivalent to Q”, i.e. P holds if and only if Q holds – the two
statements have the same truth values.

These new statements are defined by truth tables. For example:

P Q P ∨Q
T T T
T F T
F T T
F F F

P Q P ⇒ Q
T T T
T F F
F T T
F F T

Thus P ⇒ Q is false ONLY IF P holds and Q does not: if P is false P ⇒ Q is true.
Therefore, knowing that P ⇒ Q is true, while P is false gives NO INFORMATION
on Q: it could be true or false.

Exercise 1.3. (optional) Redo Exercise 1.2 by showing that the two expressions P ⇒
Q and Q ∨ ¬P have the same truth tables.

A proof strings together a series of statements and logical reasoning using truth
tables. The standard syllogism (modus ponens) is: P holds and P ⇒ Q holds,
therefore Q holds. So we advance from knowing that P is true to knowing that Q is
true; we say we derive the truth of Q from that of P .

Example: When it rains, the roads are slippery. It is raining. Therefore the roads
are slippery.

Here P is “It is raining”; Q is “The roads are slippery”.

Exercise 1.4. Explain what the following statements mean as simply as you can:
a) (¬P ) ∨ (¬Q)
b) ¬(P ⇒ Q).

Propositional calculus poems. Someone seems to think there ought to be poems writ-
ten in the Propositional Calculus, which is the name for the branch of logic de-
voted to reasoning with formal propositions and connectives, as above. See http:

//www.poetrysoup.com/poems/propositional_calculus. However, no examples
are given.

2. Sets

Much if not most of contemporary mathematics is expressed in the language of
sets, which was introduced by Georg Cantor in the late 19th century. This can lead
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to some sticky philosophical issues, because a set, like a point or a line in Euclidean
geometry, is a primitive notion; it doesn’t have a meaningful definition. Euclid defines
a point as “that which has no part” – which is intuitively compelling but not very
precise. Similarly, one thinks of a set as a collection of objects, one talks about them
as one does about any collections of objects, and one doesn’t worry what kind of
objects they are or where they come from. On the other hand, there are rules for
forming new sets out of old sets – some of them strict rules, to avoid some of the
more obvious philosophical paradoxes.

In practice one works with examples and in that way develops a feeling for what
one can and can’t do with sets. Fortunately, much of this work has taken place
long before one encounters the formal notion of a set. Here are some examples from
ordinary life, from elementary mathematics, and from less elementary mathematics.

Example 2.1. (a) The candidates in the Republican presidential primaries.
(b) The molecules in the universe.
(c) The sides of a polygon.
(d) The solutions to a quadratic equation.
(e) Z (the integers).
(f) R (the real numbers).
(g) The solutions to a system of k linear equations in n variables.
(h) The empty set ∅.

Given a set S and an object (or element a) all we can say is whether a is in S
(a ∈ S) or a is not in S (x /∈ X). The inclusion of objects in sets is closely related to
the truth or falsity of a proposition. Recall the example

X + 3 = 0.

We said this was not a statement because its truth or falsity depends on X. We can
define a set S to be the set of integers X ∈ Z such that the statement X + 3 = 0 is
true. This is the usual way to get interesting sets in mathematics: starting from a
sentence that depends on a variable in a set, look for the values of the variable that
make the sentence true.

More formally, sets X can be defined by sentences like: X = {n ∈ Z : P (n)}, where
P is a statement depending on n. Here Z can be replaced by R or any other reference
set.

To be is to be the value of a variable. (W. V. O. Quine, taken slighly out of context.)

Example 2.2. X = {n ∈ Z : 3 divides n)}
The book has some idiosyncratic notation:
N =

{
k ∈ Z : k ≥ 0} = {0, 1, 2, 3, . . .

}
.

dne = {0, 1, . . . , n− 1}. (thus the set dne contains exactly n elements.)
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2.1. Relations between sets.

• equality The set X is entirely described by the set of elements that are in it.
So the statement X = Y means that an element a belongs to X if and only if
it belongs to Y : in symbols

a ∈ X ⇐⇒ a ∈ Y.

The technical name for this is extensionality; in philosophy the notion is
traced back to Leibniz – long before Cantor – and it’s called the Identity of
indiscernables. Say X is the set of your properties, and Y is the set of your
neighbor’s properties. If all of your properties are also properties of your
neighbor, and vice versa, then you and your neighbor are the same person –
you are indiscernable.
• subset A ⊆ B (same as B ⊇ A) – sometimes people write A ⊂ B for this,

but it is not so clear.
• proper subset ∅ 6= A ( B (same as B ) A 6= ∅)

Exercise 2.3. Look at your neighbor, and use extensionality to determine whether
or not you and your neighbor are the same person.

2.2. Operations on sets. In other words, making new sets from old. (Details in
class or in the book.)

• union A ∪B,
• intersection A ∩B, – also A,B are disjoint if A ∩B = ∅
• complement in U : if X ⊂ U (here U is the “universal set”) then
Xc = {x ∈ U : x /∈ X}.
• Cartesian product A×B (eg the plane R2).

DISTRIBUTIVE LAWS:

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

DE MORGAN’S RULES: If A,B ⊂ U then

• (A ∪B)c = Ac ∩Bc,
• (A ∩B)c = Ac ∪Bc

Exercise 2.4. Prove the first of De Morgan’s Rules. (To be discussed next time.)

Here is a sample proof.

Proposition 2.5. Let A,B,C be any sets. Then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Strategy: We must show that every element x in A ∪ (B ∩ C) is also an element in
(A∪B)∩ (A∪C), and also that every element in (A∪B)∩ (A∪C) is also an element
in A ∪ (B ∩ C). This is simple enough – we just do it.
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Proof. i) We show that A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C).
Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ B ∩ C. If x ∈ A then x ∈ A ∪ B and

x ∈ A ∪ C so that x ∈ (A ∪ B) ∩ (A ∪ C). On the other hand, if x ∈ B ∩ C then
x ∈ B and x ∈ C, so that x ∈ A ∪ B and x ∈ A ∪ C. Hence x ∈ (A ∪ B) ∩ (A ∪ C).
Therefore in both cases x ∈ (A ∪B) ∩ (A ∪ C). This proves (i).

ii) We show that (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).
Let x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B and x ∈ A ∪ C. If x ∈ A, then

x ∈ A ∪ (B ∩ C), so we are done. If x /∈ A then we must have x ∈ B and x ∈ C, i.e.
x ∈ B ∩ C. Therefore again x ∈ A ∪ (B ∩ C).

This completes the proof. �

Typically, to prove results about sets you must make arguments about the proper-
ties of the elements of these sets.
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