
PRACTICE FINAL SOLUTIONS

FALL 2018

UN1201: CALCULUS III

Problem 1.

(a) True, ~u · (2~v− ~w) = 2~u ·~v− ~u · ~w = 2(1) − (2) = 0.

(b) True, reparametrize the curve ~r(t) = (x, f(x)) according to arc length so 0 = κ =

|~r ′′(s)|. Then ~r ′′(s) = 0, so r ′(s) is constant. Then ~r(s) = ~r0 + s~u for some vector

~r0 and unit vector ~u.

(c) True, the gradient vector is zero at local minima and maxima and therefore parallel

to all planes by virtue of being perpendicular to all possible normal vectors.

(d) True, observe that x4+y4−x2y2 = (x4−2x2y2+y4)+x2y2 = (x2−y2)2+(xy)2 ≥ 0

for all real (x, y).

Problem 2.

(a) Let (x0, y0, z0) be the intersection point of ` and m. From z0−2
c

+3 = x0 =
1−z0
3

+2,

we deduce 3z0− 6+ 3c = c− cz0 and so (3+ c)z0+(−6+ 2c) = 0. Then z0 =
6−2c
3+c .

From 3z0−2
c

− 4 = y0 = −21−z0
3

+ 3, we deduce 9z0 − 18 = −2c + 2cz0 + 21c and

so (9− 2c)z0 + (−18− 19c) = 0. Then 6−2c
3+c = z0 =

18+19c
9−2c , so

0 = (6−2c)(9−2c)−(18+19c)(3+c) = 4c2−30c+54−19c2−75c−54 = −15c2−105c = −15c(c+7).

Being the denominator of z−2
c

, we know that c must be nonzero. Then we must

have c = −7.

(b) Let t = x − 2 = 3−y
2

= 1−z
3

, so ` is given by x = t + 2, y = −2t + 3, z = −3t + 1,

i.e. (1,−2,−3)t + (2, 3, 1). Similarly, letting s = x − 3 = y+4
3

= z−2
−7 , we have that

m is given by (1, 3,−7)t+ (3,−4, 2).

Then the plane containing both lines is perpendicular to (1,−2,−3)×(1, 3,−7) =

(23, 4, 5). From our expressions in (a), we know that z0 =
6−2(−7)
3+(−7) = 20

−4 = −5. Then

x0 = 1−z0
3

+ 2 = 1−(−5)
3

+ 2 = 4 and y0 = −2(x0 − 2) + 3 = −2(4 − 2) + 3 = −1.
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False:  if S is a level surface of a function g, then the gradient of f is parallel to the gradient of g at the point P.  Thus the gradient of f is perpendicular, not parallel, to the tangent plane at P. 
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Hence (4,−1,−5) is the point of intersection of ` and m (check that this is true by

verifying that both symmetric equations hold for this point!).

The plane containing both lines can be written as

23(x− 4) + 4(y+ 1) + 5(z+ 5) = 0,

or as

23x+ 4y+ 5z− 63 = 0.

Problem 3.

(a) A sketch should look like:

(b) The first partials are fx(x, y) = 3x
2−y−1 and fy(x, y) = −x+2y. If 0 = fy(x, y) =

−x + 2y, then x = 2y, so 0 = fx(x, y) = 3(2y)2 − y − 1 = 12y2 − y − 1 which has

solutions −1
4

and 1
3

. Since x = 2y, the two critical points of f are (−1
2
,−1

4
) and

(2
3
, 1
3
). We see that (2

3
, 1
3
) lies in the region R since 1

3
≥ 0, 2

3
≥ 0, and 1

3
+ 2
3
= 1 ≤ 2.

This is the only critical point of f in R, since −1
2
< 0.

(c) The second partials are fxx(x, y) = 6x, fxy(x, y) = −1, fyy(x, y) = 2. At the critical

point (2
3
, 1
3
), we have that D = (62

3
)(2) − (−1)2 = 8 − 1 = 7 > 0 with fxx(

2
3
, 1
3
) =

4 > 0 so it is a local minimum for f.

We must also check f along the boundary of R, i.e. where x = 0, y = 0, or

x + y = 2. When x = 0, we have f(0, y) = y2 which clearly has a minimum of

0 and a maximum of 4 when restricted to x = 0 and R. When y = 0, we have

f(x, 0) = x3 − x which has a minimum of −2
√
3
9

(differentiate with respect to x

to find the single-variable minimum at x =
√
3
3

) and a maximum of 6 (at x = 2)

along y = 0 in R. When x + y = 2, we have y = 2 − x. Then f(x, 2 − x) =

x3 − x(2 − x) + (2 − x)2 − x = x3 + 2x2 − 7x + 4. Using single-variable techniques,

we have that f has a minimum of 0 (at x = 1) and a maximum of 6 (at x = 2) along

y = 2− x in R.
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The only critical point of f in R is (2
3
, 1
3
) with local minimum f(2

3
, 1
3
) = −13

27
,

which is less than the minimum value of −2
√
3
9

along the boundary of R, so f attains

its absolute minimum in R of −13
27

at (2
3
, 1
3
). Since there is no local maximum of f

in the interior of R, the absolute maximum of f is its maximum along the boundary,

which is the value of 6 attained at (2, 0).

Problem 4.

(a) The level surfaces are of the form k− 14 = x2 − 2y2 + z2

9
. This is a hyperboloid of

one sheet when k− 14 > 0, i.e. when k > 14, and a hyperboloid of two sheets when

k− 14 < 0, i.e. when k < 14. When k = 14, we have an elliptic cone.

(b) The given level surface is F(x, y, z) := x2 − 2y2 + z2

9
− 2 = 0. Then Fx(x, y, z) =

2x, Fy(x, y, z) = −4y, Fz(x, y, z) = 2z
9

. Then the tangent plane to the given level

surface at (1, 2, 9) is given by Fx(1, 2, 9)(x−1)+Fy(1, 2, 9)(y−2)+Fz(1, 2, 9)(z−9) = 0,

so it is

2(x− 1) + −8(y− 2) + 2(z− 9) = 0,

which can also be written as

2x− 8y+ 2z− 4 = 0.

Problem 5.

(a) Along {y = 0}, we have lim(x,z)→(0,0) f(x, 0, z) = lim(x,z)→(0,0)
x2+z2

x2+z2
= 1. However,

along {x = 0, z = 0}, we have limy→0 f(0, y, 0) = limy→0 −y2

y2
= −1. Hence, the limit

lim(x,y,z)→(0,0,0) f(x, y, z) does not exist.

Switching to spherical coordinates, we have that

lim
(x,y,z)→(0,0,0)

g(x, y, z) = lim
ρ→0g(ρ, θ,φ)

= lim
ρ→0

ρ4 cos4 θ sin4φ+ ρ4 sin4 θ sin4φ+ ρ4 cos4φ

ρ2

= lim
ρ→0 ρ2(cos4 θ sin4φ+ sin4 θ sin4φ+ cos4φ)

= 0.

(b) In order to be sure that the bridge will not collapse, we must have that the absolute

maximum of w in the region given by 14.86 ≤ x ≤ 15.14, 3.86 ≤ y ≤ 4.14, and

2.86 ≤ z ≤ 3.14 is less than 22.5. However, we can observe that w always increases

with respect to x, y, and z. Thus, we only need to ensure that w(15.14, 4.14, 3.14) >

22.5.
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Without directly calculating w(15.14, 4.14, 3.14), we can try a linear approxima-

tion using the tangent plane at (15, 4, 3) to overestimate w(15.14, 4.14, 3.14). Cal-

culate that w(15, 4, 3) = 21,wx(15, 4, 3) =
33
35
, wy(15, 4, 3) =

99
28

, and wz(15, 4, 3) =

15
7

. Then the linear approximation is

w(15.14, 4.14, 3.14) ≈ w(15, 4, 3) +wx(15, 4, 3)(0.14) +wy(15, 4, 3)(0.14) +wz(15, 4, 3)(0.14)

= 21+ (
33

35
+
99

28
+
15

7
)(0.14)

≤ 21+ (1+ 4+ 3)(0.14)

= 21+ 8(
7

50
)

= 21+
56

50

= 22.12

< 22.5.

However, we do not know if the linear approximation overestimates or underes-

timates the value of w(15, 4, 3), so we cannot be absolutely sure.

Problem 6.

(a) Observe that~r(1) = (2, 1, 0) = P and~r(2) = (4, 4, ln(2)) = Q. Using the components

of ~r ′(t) = (2, 2t, 1
t
), the arc length of C between P and Q is

L =

∫2
1

√
4+ 4t2 +

1

t2
dt

=

∫2
1

√
(2t+

1

t
)2dt

=

∫2
1

(2t+
1

t
)dt

= t2 + ln(t) |21

= (4− 1) + (ln(2) − 0)

= 3+ ln(2).

(b) Compute that ~r ′′(t) = (0, 2,− 1
t2
), ||~r ′(t)|| = 2t+ 1

t
, ~r ′(t)×~r ′′(t) = (−4

t
, 2
t2
, 4), and

||~r ′(t)×~r ′′(t)|| = 2
t2

+ 4. Then

κ(t) =
2
t2

+ 4

(2t+ 1
t
)3

=
2t+ 4t3

(2t2 + 1)3
=

2t

(2t2 + 1)2
.
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(c) The osculating plane is perpendicular to ~T × ~N, so we may use ~r ′(t)×~r ′′(t) as the

normal vector since scalar factors do not matter. At point P, we have~r ′(1)×~r ′′(1) =

(−4, 2, 4) and at point Q, we have ~r ′(2) ×~r ′′(2) = (−2, 1
2
, 4). Then the osculating

planes are:

PP : −4(x− 2) + 2(y− 1) + 4z = 0

PQ : −2(x− 4) +
1

2
(y− 4) + 4(z− ln(2)) = 0.

To find the line of intersection of the two planes, we need the cross product of

their normal vectors: (−4, 2, 4)× (−2, 1
2
, 4) = (6, 8, 2). If we set x = 0, then solving

the system of equations 2(y − 1) + 4z = 0, 1
2
(y − 4) + 4(z − ln(2)) = 0 yields the

point (0,−8 ln(2)
3

, 1
2
+ 4
3

ln(2)) in the intersection of the two planes. Then we may

write the line of intersection as

(6, 8, 2)t+ (0,−
8 ln(2)

3
,
1

2
+
4

3
ln(2)).

Problem 7.

(a) Recall that

x = ρ cos θ sinφ,

y = ρ sin θ sinφ,

z = ρ cosφ.

Using chain rule, we get

∂f

∂ρ
= 2x(

∂x

∂ρ
) − y(

∂x

∂ρ
) − x(

∂y

∂ρ
) + 3z2(

∂z

∂ρ
)

= 2ρ cos2 θ sin2φ− 2ρ cos θ sin θ sin2φ+ 3ρ2 cos3φ,

∂f

∂θ
= −2ρ2 cos θ sin θ sin2φ+ ρ2 sin2 θ sin2φ− ρ2 cos2 θ sin2φ,

∂f

∂φ
= 2ρ2 cos2 θ sinφ cosφ− 2ρ2 sin θ cos θ sinφ cosφ− 3ρ3 cos2φ sinφ.

(b) Implicitly differentiating 3 = x2 − xy + z3 with respect to x, we have 0 = 2x − y −

x∂y
∂x

+ 3z2 ∂z
∂x

. At (2, 1, 1), this simplifies to 0 = 4− 1− 2∂y
∂x

+ 3∂z
∂x

, so ∂z
∂x

= 2
3
∂y
∂x

− 1.

(c) The maximum rate of change occurs in the direction of the gradient ∇f(x, y, z) =

(2x− y,−x, 3z2) with rate ||∇f(x, y, z)|| =
√

(2x− y)2 + x2 + 9z4. At (2, 1, 1), this

is a rate of
√
9+ 4+ 9 =

√
22 in the direction of (3,−2, 3).

Problem 8.
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(a) The quadratic equation yields

x =
−(4)±

√
16− 4(1)(10)

2(1)
=

−4±
√
−24

2
,

both of which are not real because
√
−24 is not real.

(b) (a)

3− 2i

4+ 3i
=
3− 2i

4+ 3i

4− 3i

4− 3i
=
6− 17i

25
=
6

25
−
17

25
i.

(b)

−2+ 2i
1
3 = −2+ 2(1

1
6 )

= −2+ 2e
2πi
6

= −2+ 2(sin(
π

3
) + cos(

π

3
)i)

= −2+ 2(
1

2
+

√
3

2
i)

= −1+
√
3i

(c) Recall that cos(θ) = eθi+e−θi

2
, so cos(3θ) = e3θi+e−3θi

2
. But observe that cos(θ)3 =

(e
θi+e−θi

2
)3 = e3θi+3eθi+3e−θi+e−3θi

8
. Then cos(3θ) = 4 cos(θ)3 − 3 cos(θ).

Problem 9.

(a) We have fx(x, y) = y cos(xy) and fy(x, y) = x cos(xy). Then fx(x, y) = 0 if y = 0

or xy = π
2
+ kπ for any integer k. Similarly, fx(x, y) = 0 if x = 0 or xy = π

2
+ kπ

for any integer k. In order for both to be zero, we must have that (x, y) = (0, 0)

or xy = (k + 1
2
)π for any integer k. We can alternatively characterize the critical

points of f as (0, 0) and the points (x,
(k+ 1

2
)π

x
) for nonzero x and integers k.

(b) We have fxx(x, y) = −y2 sin(xy), fxy(x, y) = cos(xy) − xy sin(xy), fyy(x, y) =

−x2 sin(xy). Then D(x, y) = x2y2 sin2(xy) − (cos2(xy) − 2xy cos(xy) sin(xy) +

x2y2 sin2(xy)) = 2xy cos(xy) sin(xy) − cos2(xy).

At (0, 0), D(0, 0) = −1, so it is a saddle point of f. At (x,
(k+ 1

2
)π

x
) for an

integer k, D(x, y) = 0 so the second partial derivative test is inconclusive. However,

f(x,
(k+ 1

2
)π

x
) = 1 when k is even and f(x,

(k+ 1
2
)π

x
) = −1 when k is odd. Since

f(x, y) = sin(xy) is bounded by −1 and 1, clearly f has local maxima when k is even

and local minima when k is odd.

Problem 10.
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Considering only points (x, y, z) satisfying z = x2 + 3y2, we have that

f(x, y, x2 + 3y2) = x2 + 2x(x2 + 3y2) +
y2

4
+ (x2 + 3y2)2 − 3

= (x+ (x2 + 3y2))2 +
y2

4
− 3.

Observe that the non-constant terms are always non-negative and notice that f(0, 0, 0) =

−3 and f(−1, 0, 1) = −3. Then −3 must be the absolute minimum value of f on the

given elliptic paraboloid.

To see that these are the only points on the elliptic paraboloid where f attains the

value of −3, observe that we need (x+ (x2 + 3y2))2 = 0 and y2

4
= 0. Then y = 0 from

the latter condition, so we can simplify the former condition to (x + x2)2 = 0 which is

equivalent to x2 + x = 0. This occurs precisely when x = 0 or x = −1.

Alternatively, the problem can be solved using Lagrange multipliers, as explained during the review session.


	

