PRACTICE FINAL SOLUTIONS

FALL 2018
UN1201: CALCULUS III

Problem 1.

(a) True, - (2V—w)=2u-v—uU-w=2(1)—(2) =0.

(b) True, reparametrize the curve ¥(t) = (x, f(x)) according to arc length so 0 = k =
|¥”(s)]. Then (s) = 0, so r'(s) is constant. Then ¥(s) = 1 + sU for some vector
15 and unit vector 1.

(C) False: if S is a level surface of a function g, then the gradient of f is parallel to the gradient of g at
the point P. Thus the gradient of f is perpendicular, not parallel, to the tangent plane at P.

(d) True, observe that x*+y*—x*y? = (x*—2x*y? +y*)+x?y? = (x* —y?)?+(xy)? > 0
for all real (x,y).

Problem 2.

(a) Let (x0,Yo,20) be the intersection point of £ and m. From Z";z +3=%x9 = 1*%—1—2,

we deduce 329 —64 3¢ = ¢ —czo and so (34+¢)zo + (—642¢) = 0. Then zy = &2¢.

3+c
From 32052 —4=yp= —Z]EZO + 3, we deduce 9zp — 18 = —2¢ + 2czp + 21¢ and
s0 (9 —2¢)zo + (=18 —19¢) = 0. Then &3¢ = zo = 18£1%¢ 5o

0 = (6—2¢)(9—2¢)—(18+19¢)(34¢) = 4c2—30c+54—19¢2—75¢—54 = —15¢2—105¢ = —15¢(c+7).

Being the denominator of Z;—z, we know that ¢ must be nonzero. Then we must
have c = —7.

(b) Lett:x—ZZS—EH = 1?750615 given by x =t+ 2,y = -2t + 3,z = -3t + 1,

Le. (1,—2,-3)t+(2,3,1). Similarly, letting s = x —3 = ¥* = =2 we have that

m is given by (1,3,—7)t + (3,—4,2).

Then the plane containing both lines is perpendicular to (1,—2,—3) x (1,3,—7) =

(23,4,5). From our expressions in (a), we know that zo = 6312((:77)) = f—% = —5. Then

xo =152 42 =10 12 —4andyo = —2(x0 —2) +3=-2(4—-2) +3 = 1.
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Hence (4,—1,—5) is the point of intersection of £ and m (check that this is true by
verifying that both symmetric equations hold for this point!).

The plane containing both lines can be written as
23(x —4)+4(y+1)+5(z+5) =0,

or as

23x + 4y + 52— 63 = 0.

Problem 3.

(a)

(b)

A sketch should look like:

X

The first partials are fy (x,y) = 3x> —y—1 and fy(x,y) = —x+2y. If 0 =fy(x,y) =

—x + 2y, then x = 2y, so 0 = f,(x,y) = 3(2y)? —y — 1 = 12y2 —y — 1 which has

1
7

(%, %) We see that (%, %) lies in the region R since 1§ >0, % >0, and 1§—|—% =1<2

solutions —z and % Since x = 2y, the two critical points of f are (—%,—%) and
This is the only critical point of f in R, since —% < 0.
The second partials are fyy(x,y) = 6x, fxy(x,y) = =1, fyy(x,y) = 2. At the critical
point (%, %)7 we have that D = (6%)(2) — (=12 =8—-1=7>0 with fxx(%, %) =
4 > 0 so it is a local minimum for f.

We must also check f along the boundary of R, i.e. where x = 0, y = 0, or
x +1y = 2. When x = 0, we have f(0,y) = y? which clearly has a minimum of
0 and a maximum of 4 when restricted to x = 0 and R. When y = 0, we have
f(x,0) = x> — x which has a minimum of 7% (differentiate with respect to x
to find the single-variable minimum at x = ?) and a maximum of 6 (at x = 2)
along y = 0 in R. When x +y = 2, we have y = 2 — x. Then f(x,2 — x) =
x> —x(2—x%)+ (2—x)? —x = x3 4+ 2x? — 7x + 4. Using single-variable techniques,
we have that f has a minimum of 0 (at x = 1) and a maximum of 6 (at x = 2) along

y=2—xinR.
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The only critical point of f in R is (%, %) with local minimum f(%, %) = f%,

which is less than the minimum value of —%ﬁ along the boundary of R, so f attains

its absolute minimum in R of —% at (%, %) Since there is no local maximum of f
in the interior of R, the absolute maximum of f is its maximum along the boundary,

which is the value of 6 attained at (2,0).
Problem 4.

(a) The level surfaces are of the form k — 14 = x? — 2y? + %. This is a hyperboloid of
one sheet when k— 14 > 0, i.e. when k > 14, and a hyperboloid of two sheets when
k—14 <0, i.e. when k < 14. When k = 14, we have an elliptic cone.

(b) The given level surface is F(x,y,z) := x> — 2y? + % —2 =0. Then Fi(x,y,z) =
2x, Fy(x,y,2) = —4y,F.(x,y,2) = 272. Then the tangent plane to the given level
surface at (1,2,9) is given by Fx(1,2,9)(x—1)4+Fy(1,2,9)(y—2)+F.(1,2,9)(z—9?) =0,
so it is

26— 1)+ -8(y—2)+2(z—9) =0,

which can also be written as

2x—8y+2z—4=0.

Problem 5.
(a) Along {y = 0}, we have lim(y ), (0,0) f(%,0,2) = lim(y ,)—(0,0) % = 1. However,
along {x = 0,z = 0}, we have lim_,o f(0,y,0) = lim,_,o %Zz = —1. Hence, the limit

lim (y y,2)-(0,0,0) (%, Y,z) does not exist.

Switching to spherical coordinates, we have that

l. — 1'
(X‘y»z)ILH(O,o‘O)g(X’y’Z) pﬂ%g(Pae»d))

p* cos* Bsin? ¢ + p* sin® Osin? ¢ + p* cos* P

pli% p2

= hn% p?(cos® Bsin? ¢ + sin? Osin? ¢ + cos? )
p—

=0.

(b) In order to be sure that the bridge will not collapse, we must have that the absolute
maximum of w in the region given by 14.86 < x < 15.14, 3.86 < y < 4.14, and
2.86 < z < 3.14 is less than 22.5. However, we can observe that w always increases
with respect to x, y, and z. Thus, we only need to ensure that w(15.14,4.14,3.14) >
22.5.
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Without directly calculating w(15.14,4.14,3.14), we can try a linear approxima-
tion using the tangent plane at (15,4, 3) to overestimate w(15.14,4.14,3.14). Cal-
culate that w(15,4,3) = 21,w,(15,4,3) = ,Wy(15 4,3) = 28, and w,(15,4,3) =

175. Then the linear approximation is

w(15.14,4.14,3.14) ~ w(15,4,3) + Wy (15,4,3)(0.14) + wy (15,4, 3)(0.14) + w,(15,4,3)(0.14)

3 99 15
=21+ (35 + 35+ =)(0.14)

<21+ (1+4+3)(0.14)

=21+38
+ (50

56
*50

=22.12

)

< 22.5.

However, we do not know if the linear approximation overestimates or underes-

timates the value of w(15,4,3), so we cannot be absolutely sure.

Problem 6.

(a) Observe that (1) = (2,1,0) = P and ¥(2) = (4,4,1n(2)) = Q. Using the components
of (1) = (2, 2t, 1;), the arc length of C between P and Q is

2
1
L= {/4+4t2+ Sadt
VAT g

2 1

= (2t + —)2dt
1 t

2 1

= | (2t+-)dt

1 t

=t +1In(t) }
=(4—1)+(In(2) - 0)

=3+1n(2).

(b) Compute that ¥ (t ), [I7 ()] —2t+ T(t) x 7 (t) = (—%, %z,‘”, and

) = (0,
|I¥(t) x ¥(t)|| = & +4. Then

2 44 2t + 4¢3 2t
t+1)3 (22 +1)3 VS
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(¢) The osculating plane is perpendicular to T x N, so we may use T'(t) x ¥’(t) as the
normal vector since scalar factors do not matter. At point P, we have ¥/(1) x¥(1) =
(—4,2,4) and at point Q, we have ¥'(2) x ¥(2) = (-2, %,4). Then the osculating
planes are:

Pp:—4(x—2)+2(y—1)+42=0
1
Po i —2(x—4)+ E(y —4)+4(z—1n(2)) = 0.
To find the line of intersection of the two planes, we need the cross product of
their normal vectors: (—4,2,4) x (=2, %,4) = (6,8,2). If we set x =0, then solving
the system of equations 2(y — 1) 4+ 4z = 0, %(y —4) +4(z —1n(2)) = 0 yields the

point (O,—Slngm ,% + %111(2)) in the intersection of the two planes. Then we may

write the line of intersection as

8In(2) 1 4
(6»832)t+(03_ 3 )2""
Problem 7.

(a) Recall that
X = pcosOsin ¢,

Yy = psinOsin ¢,

z = pcos ¢.
Using chain rule, we get
of ox 0x oy 5,0z
(I (L x(22 oz
3 X(ap) y(ap) X(ap)+3z (ap)

= 2pcos? Bsin? ¢ — 2p cos B sin O sin? ¢ + 3p? cos® ¢,

of
0= —2p? cos 0 sin Osin? ¢ + p? sin? O sin? ¢ — p? cos? O sin? B,
of
% = 2p? cos® 0 sin ¢ cos ¢ — 2p? sin O cos O sin ¢ cos b — 3p> cos? ¢ sin .
(b) Implicitly differentiating 3 = x? — xy + z> with respect to x, we have 0 = 2x —y —

x 3 32292 At (2,1,1), this simplifies to 0 =4 — 123 +392 50 92 = 234 1,

(¢) The maximum rate of change occurs in the direction of the gradient Vf(x,y,z) =
(2x —y, —x,32%) with rate || Vf(x,y,2)|| = /(2x —y)? +x2 + 9z*. At (2,1,1), this

is a rate of V944 + 9 = v/22 in the direction of (3,—2,3).

Problem 8.
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The quadratic equation yields

= 200 -

—(4)+ /16 —4(1)(10) —4++/—24
2 )

both of which are not real because vv—24 is not real.

(b) (a)
3-2i_3-2i4-3_6-17i_6 17,
4431 443i4-31 25 25 257
(b)
—242i% =24 2(1%)
=_2+2e7%
- —2—|—2(Sin(§) —|—Cos(%[)i)
1,V3
242 4 Y2
+ (2 + 5 i)
=—14+V31
(¢) Recall that cos(8) = M, 50 cos(30) = M But observe that cos(0)® =
(eeigeiei )3 = eaei+3eei+§eiei+e73m. Then cos(30) = 4 cos(8)3 — 3 cos(0).
Problem 9.
(a) We have fy(x,y) = ycos(xy) and fy(x,y) = xcos(xy). Then fy(x,y) =0ify =0

or xy = 5 + km for any integer k. Similarly, fx(x,y) =0if x =0 or xy = § + km
for any integer k. In order for both to be zero, we must have that (x,y) = (0,0)
or xy = (k+ %)71 for any integer k. We can alternatively characterize the critical

points of f as (0,0) and the points (x, for nonzero x and integers k.

We have fyy(x,y) = —y? sin(xy), fxy (%, y) = cos(xy) — xysin(xy), fyy(x,y) =
—x2sin(xy). Then D(x,y) = x?y?sin?(xy) — (cos?(xy) — 2xy cos(xy) sin(xy) +
x2y? sin?(xy)) = 2xy cos(xy) sin(xy) — cos? (xy).

At (0,0), D(0,0) = —1, so it is a saddle point of f. At (x,@) for an
integer k, D(x,y) = 0 so the second partial derivative test is inconclusive. However,

f(x, (ktc%)”) = 1 when k is even and f(x, (kt(%]n) = —1 when k is odd. Since

f(x,y) = sin(xy) is bounded by —1 and 1, clearly f has local maxima when k is even

and local minima when k is odd.

Problem 10.
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Considering only points (x,y,z) satisfying z = x? 4 3y?, we have that

2
f(x,y,x* + 3y?) =x% + 2x(x? + 3y?) + yz + (x* +3y%)? -3

=(x+ (x*+3y3))* + % —3.

Observe that the non-constant terms are always non-negative and notice that (0, 0, 0)
—3 and f(—1,0,1) = —3. Then —3 must be the absolute minimum value of f on the
given elliptic paraboloid.

To see that these are the only points on the elliptic paraboloid where f attains the
value of —3, observe that we need (x + (x? + 3y?))? = 0 and 1’4—2 = 0. Then y = 0 from
the latter condition, so we can simplify the former condition to (x + x?)% = 0 which is

equivalent to x? +x = 0. This occurs precisely when x =0 or x = —1.

Alternatively, the problem can be solved using Lagrange multipliers, as explained during the review session.
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