
ARITHMETIC OF THE OSCILLATOR REPRESENTATION

Michael Harris

§1. Moduli

1.1. Let V = Q

2g, and let <,> be the standard symplectic form on V , represented

by the matrix
✓

0 Ig

�Ig 0

◆
. Let T be the lattice Z

2g ⇢ V . We extend <,> to the

finite adeles V ⌦Af . Let G = Sp(V,<,>). For any additive character

 : Af ! µ1 ⇢ Gm,

the pairing
(x, y) 7!< x, y > 

def=  (< x, y >)

is a bilinear form on V ⌦Af , with values in µ1. Moreover, T ⌦ Ẑ is a maximal
subgroup U ⇢ V ⌦Af with the property that

< t1, t2 > = 1 8t1, t2 2 U.

If  : Af ! µ1 is another character, then  (z) =  (az), for some a 2 Af,⇥.
On the other hand, the action of Gal(Qab/Q) on µ1 ⇢ Gm defines an action on
Hom(Af , Gm). There exists � 2 Gal(Qab/Q) such that  0 =  �. If we denote the
reciprocity isomorphism

Ẑ

⇠�! Gal(Qab/Q)

a 7! �a

normalized so that p goes to the inverse of Frobenius (mod p), then evidently

(1.1.1)  (az) =  �
�1
a (z) 8 2 Hom(Af , Gm).

1.2. Let N � 3 be a positive integer, and let Mg
N be the moduli space of g-

dimensional principally polarized abelian varieties A with level N structure

↵N : A[N ] ⇠�! N�1T/T ⇢ V ⌦Af/T.

We require that the restriction to N�1T/T of the bilinear form <,> on V ⌦Af/T
correspond via ↵, up to a scalar multiple in (Z/NZ)⇥, to the Weil pairing on
A[N ] induced by the given polarization. Choose  2 Hom(Af/Ẑ, Gm), and let
Mg

N, ⇢M
g
N be the connected component for which ↵ is a symplectic isomorphism,

with respect to <,> on the right hand side.
Since N � 3, there exists a universal abelian scheme Ag

N/Mg
N , with principal

polarization [⇤]g, and a symplectic similitude of finite group schemes

↵g
N : Ag

N [N ] ⇠�! (N�1T/T )Mg

N

.
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1.3. Let ⇡ : Ag
N !Mg

N be the canonical map. With  as in 1.2, let Ag
N, =

⇡�1(Mg
N, ). We let

Mg = lim �
N

Mg
N , Mg

 = lim �
N

Mg
N, ,

define Ag to be the pullback to Mg of Ag
N/Mg

N , for any N , and define Ag
 likewise.

1.4. Let S be any scheme over Spec(Q), and let A be an abelian scheme of relative
dimension g over S. The family T = T (A) of homomorphisms B/S ! A/S, with
kernel finite and flat over S, is an inverse system for which

[n] = (multiplicationbyn) : A ! A

forms a cofinal subset. The inverse limit over T exists in the category of schemes;
we denote it Â. Lacking a better name, we call Â the isocompletion of A. We let

Â(t) = lim �
B2T (A)

B(tors).

A full level structure on A (or on Â) is an isomorphism over S

(1.4.1) ↵ : Â(t) ⇠�! V ⌦Af S

Obviously any finite flat isogeny A/S ! A0/S induces an isomorphism Â
⇠�! Â0.

Following Deligne, we define the category of abelian varieties up to isogeny, or a.v.i.,
to be the category whose objects are abelian schemes over S and in which isogenies
are isomorphisms. The functor A 7! Â takes the category of abelian varieties over
Q to the category of schemes over Q; the essential image of this functor is equivalent
to the category of a.v.i.

More generally, if d 2 Z, we can consider the family Td (resp. T d of B/S ! A/S 2
T whose kernel is of order equal to a product of primes dividing d (resp of order
prime-to-d); we can define (̂A)(d) (resp. Â(d) to be the inverse limit over 0CalTd

(resp. T d). If we define the category of abelian schemes over S up to d-primary
isogeny (resp. prime-to-d isogeny) to be the category of abelian varieties with iso-
genies of degree equal to a product of primes dividing d (resp. prime to d ) then
A 7! Â(d) and A 7! Â(d) take the category of abelian schemes over Z[d�1] (resp.
over the localization of Z at d) to the respective categories of abelian schemes up
to isogeny.

For any abelian variety A, let NS(A) be the Neron-Severi group of A. Then
NS(A) ⌦ Q depends only on the isogeny class of A. A polarized a.v.i. is an a.v.i.
A together with an element of (NS(A)⌦Q)/Q

⇤.

1.5. We apply these remarks to the situation considered in 1.2, 1.3. There is a
universal full level structure on Âg:

(1.5.1.) ↵g : hatAg(t) ⇠�! V ⌦AfMg

Let  2 Hom(Af , Gm), and let Âg
 be the restriction of Âg to Mg

 . Now, Mg
 is

the moduli space for polarized a.v.i. with full level structures (1.5.1) of type  , in
the obvious sense, and the morphism Âg

 !Mg
 may be viewed as the universal

polarized a.v.i. with full level structure of type  .
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1.6. Let GSp = GSp(V,<,>) be the group of symplectic similitudes of V . The
group GSp(Af ) acts naturally on the moduli space Mg

 through its action on full
level structures. In fact, a geometric point of Mg

 is given by a triple (A,⇤,↵),
where A is an a.v.i., ⇤ is a polarization on A, and ↵ is a full level structure (1.4.1).
Thus if � 2 GSp(Af ) and x = (A,⇤,↵) 2Mg

 , then �(x) = (A,⇤, � � ↵).
Similarly, a geometric point of Âg

 is given by a quadruple (A, a,⇤,↵), where
a 2 Â. Thus the action of GSp(Af ) onMg

 lifts to an action on Âg
 : �(A, a,⇤,↵) =

(A, a,⇤, � � ↵), for all � 2 GSp(Af ).

2. Linear systems

Most of the contents of §2 and §3 are copied verbatim from Mumford’s series of
articles “On the equations defining abelian varieties.” Not all of our assertions are
literally stated as such by Mumford, but the reader will easily supply the missing
details.

The following definitions and results are mostly in §1 and §6 of [M1]. Let S
be a scheme over SpecQ. The basic object in this section is a pair (A,L), where
⇡ : A ! S is an abelian scheme of relative dimension g, and L is a relatively ample
invertible sheaf (= line bundle) on A. One should think of S as the moduli space
of polarized abelian varieties with level structure, although eventually more general
cases will be considered.

Let T be a scheme over S, and let H(L)(T ) be the group of sections ↵ : T ! AT

such that, if T↵ : AT ! AT is translation by ↵, then

T ⇤↵L ⇠= L⌦ ⇡⇤T M

for some invertible sheaf M on T ; here ⇡T : AT ! T is the natural morphism. Let
H0(L)(T ) be the subgroup of ↵ 2 H(L) such that

T ⇤↵L ⇠= L.

Finally, let G(L)(T ) be the group of pairs (↵,'), where ↵ 2 H0(L)(T ) and ' :
T ⇤↵L

⇠�! L is an isomorphism. Then T 7! H(L)(T ) and T 7! G(L)(T ) are functors
from the category of S-schemes to the category of groups. Mumford shows in [M1],
II, p. 76, that these functors are representable by group schemes G(L) and H(L),
respectively, flat and of finite presentation over S, which fit into an exact sequence
in the Zariski topology:

(2.1) 1 ! (Gm)S ! G(L) ! H(L) ! 1.

Moreover, H(L) is a finite flat subgroup scheme of A.
The group scheme G(L) is a version of the Heisenberg group. It acts naturally

on the sheaf ⇡ ⇤ L: If U ⇢ S is an open subset, � = (↵,') 2 G(L)(U), and
' 2 �(AU , L), then

(2.2) '�
def= ' � T ⇤↵(f) 2 �(AU , L)

This action can be understood most easily when S is the spectrum of a local ring
R. Then H(L) is the constant group scheme H(L) ⇥ S. In general, the extension
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(2.1) defines a skew symmetric pairing on H(L) with values in Gm: if x̃, ỹ 2 G(L)
map to x, y 2 H(L), then

(2.3) eL(x, y) = x̃ỹx̃�1ỹ�1 2 Gm

is well-defined and non-degenerate. When S = SpecR as above, then we may
decompose H(L) as a product

(2.4) H(L) ⇠= H0 ⇥ Ĥ0,

where H0 is a maximal isotropic subgroup for eL, and hatH0 = Hom(H0, Gm).
On the other hand, we may define the Heisenberg group G(H0) to be the set of

triples
{(t, h, ĥ) | t 2 Gm, h 2 H0, ĥ 2 Ĥ0

with multiplication

(2.5) (t, h, ĥ) · (t‘, h‘, ĥ‘) = (t · t‘ · ĥ0(h), h + h‘, ĥ + ĥ0).

An isomorphism as in (2.4) induces an isomorphism

(2.6) G(L) def= G(L)(S) ⇠= G(H0).

It follows from a version of the Stone-Von Neumann theorem, and from results
of Mumford in §1 of [M1], that

Proposition 2.7 (Mumford). The R-module �(A,L) is free of rank |H0| =p
|H(L)| . The representation (2.1.2) of G(L) on �(A,L) is identified, via (2.6),

with the unique irreducible representation of G(H0) on which its center Gm acts by
the identity character

t 7! (multiplication by t).

Although H0 is not uniquely determined by L, its set of elementary divisors is:

H0 ⇠= Z/d1Z� · · ·� Z/dgZ.

for some g-tuple of integers � = (d1, . . . , dg), with d1 | d2 | · · · | dg. We say L is
of type �; the type of a relatively ample line bundle is constant on an irreducible
scheme S over Spec(Z) provided dg is invertible on S. We let

d = d(�) =
Y

i

di.

Then if (A,L) and ⇡ : A ! S are as above, the sheaf ⇡⇤L is locally free of rank d
on S.

Let

K(�) =
gM

i=1

Z/diZ,
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with � as above; let K̂(�) = Hom(K(�), Gm), and let H(�) = K(�)⇥ K̂(�). We let
G(�) = G(K(�)), with multiplication as in (2.5). Following Mumford, we define a
✓-structure on (A,L) to be an isomorphism

G(L) ⇠�! G(�)S

which restricts to the identity on their respective centers Gm. Of course, the alge-
braic group G(�) has a representation ⇢� on the free Z[d�1]-module

V� = V�(Z[d�1]) = {functions from K� to Z[d�1]} :

If f 2 V�, ↵ 2 Gm(Q), x 2 K(�), ` 2 K̂(�), then

(2.8) ⇢�((↵, x, `))f(y) = ↵ · `(y) · f(x + y).

We paraphrase a proposition of Mumford ([M1], II, p. 80):

Proposition 2.9 (Mumford). Let (A,L) be of type �, and let

� : G(L) ⇠�! G(�)S

be a ✓-structure on (A,L). Denote by ⇢� the representation of G(�)S on ⇡L defined
by (2.2) and the isomorphism �. Let K = K(L,�) ⇢ ⇡L be the subsheaf on which
⇢�(K̂(�)) acts trivially. Define an action of G(�)S on V� ⌦K by tensoring ⇢� with
the trivial action on K. Then there is an isomorphism of sheaves

(2.10) ⇡L
⇠�! V� ⌦K

equivariant with respect to G(�)S, and unique up to multiplication by an element of
�(S,O⇤S).

2.11. Suppose now that (� : B ! S, M) is another polarized abelian scheme over
S, and suppose we are given an isogeny p : A ! B over S, with kernel K flat over
S, and an isomorphism L

⇠�! p⇤M . In [M1], p. 290 ↵., Mumford constructs a
subgroup scheme K̃ = K̃(L,M) ⇢ G(L) which fits into a diagram

G(L) ����! H(L) ����! 0

[ [

K̃
⇠����! K

and a canonical isomorphism Z(K̃)/K̃
⇠�! G(M), where Z(K̃) is the centralizer of

K̃ in G(L).
The isomorphism K

⇠�! K̃ ⇢ G(L) defines an action of K on L; this action is
the descent datum corresponding to the isomorphism L

⇠�! p ⇤M . In particular,
the canonical morphism �⇤M ! ⇡⇤L provides an isomorphism �⇤M

⇠�! (⇡ ⇤ L)K̃

(cf. [M1], §1, proof of Theorem 4). On the other hand, in characteristic prime to
d, there is a natural projection

P (L,M) : (⇡⇤L)K̃ ! (⇡ ⇤ L)K̃ ⇠= �⇤M.
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Let R(L,M) = KerP (L,M) ⇢ ⇡⇤L; R(L,M) is a locally free subsheaf of ⇡⇤L.
Suppose (B,M) is of type ⌘, and let

(2.11.1)

� : G(L) ⇠����! G(�)S

[ [

Z(K̃) ⇠����! Z(�(K̃))
??y

??y

µ : G(M) ⇠����! G(⌘)S

be a commutative diagram where the horizontal arrows are ✓-structures and the left
vertical arrow is given by the isomorphism Z(K̃)/K̃

⇠�! G(M). We may naturally
identify V⌘ ⇠= V

�(K̃)
� . Proposition 2.9 then gives us a commutative diagram of

sheaves over S, equivariant under Z(�(K̃)):

(2.11.2)

⇡⇤L
⇠����! V� ⌦K(L,�)

??y
??y

�⇤M
⇠����! V⌘ ⌦K(M,µ).

Here the left vertical arrow is P (L,M) and the left vertical arrow is of the form
P (�, ⌘)⌦t, where P (�, ⌘) : V� ! V

�(K̃)
�

⇠= V⌘ is the projection and t : K(L,�) ! K(M,µ)
makes the diagram commute. Note that the horizontal arrows are determined only
up to multiplication by an element of �(S,O⇤S).

Now L and M are both relatively ample, hence define morphisms A ! PS(⇡⇤L),
B ! PS(�⇤M). It follows immediately from the ampleness of M that the image of
A in PS(⇡⇤L) does not intersect PS(R(L,M)). The homomorphism P (L,M) deter-
mines a morphism PS(⇡⇤L)�PS(R(L,M)) ! PS(�⇤M). Let R(�, ⌘) = Ker P (�, ⌘).
We obtain a commutative diagram of schemes over S:

(2.11.3)

A
⇠����! PS(⇡⇤L)� PS(R(L, M)) ⇠����! (P(V�)� P(R(�, ⌘))⇥ S

??y
??y

??y

B
⇠����! PS(�⇤M) ⇠����! P(V⌘)⇥ S.

3. Polarized towers

We want to work out the adelic analogue of the constructions in §2. Although
Mumford only concerns himself with the 2-adic theory, there is no di�culty in
applying his methods to the general p-adic case. Indeed, at no point do we make
use of the deeper parts of Mumford’s theory.

We begin by rigidifying the problem, although this is not essential at this point.
Let ⇡ : A ! S be as in §2.
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Definition 3.1. A (relative) line bundle L over A is symmetric if there is an
isomorphism

◆ : L
⇠�! (�1)⇤L

where (�1) denotes multiplication by (�1) on A. The isomorphism ◆ induces an
isomorphism

◆x : Lx
⇠�! Lx

for each point x of order 2 in A. We say L is totally symmetric if ◆ can be chosen
so that ◆x is the identity for all x 2 A[2].

3.2. Remarks. (a) Here we have identified A[2] with the set of geometric points
of the finite flat group scheme [Ker(2) : A ! A] over S, where (2) denotes multi-
plication by 2.

(b) If L is any line bundle, then L⌦ (�1)⇤(L) is totally symmetric.
(c) The most important property of totally symmetric line bundles is the follow-

ing: If L and L0 are algebraically equivalent totally symmetric line bundles on A,
then there exists a line bundle M on S such that

L ⇠= L0 ⌦ ⇡⇤M.

(d) On p. 78 of [M1, II], Mumford defines a canonical involution

��1 : G(L) ! G(L)

for any symmetric line bundle L. On the other hand, there is an obvious involution
D�1 : G(�) ! G(�), for any �:

D�1(↵, x, `) = (↵,�x,�`),↵ 2 Gm, x 2 K(�), ` 2 K̃(�).

A ✓-structure � : G(L) ⇠�! G(�)S is symmetric if

� � ��1 = D�1 � �.

3.3. A tower (resp. a prime-to-N tower, for some positive integer N) is an inverse
system of abelian schemes over S

T = {⇡↵ : A↵ ! S}↵2⌃

indexed by a partially ordered set ⌃, and isogenies p↵� : A↵ ! A� (resp. isogenies
of degree prime to N) whenever ↵ > �, satisfying the compatibility condition
p�� � p↵� = p↵� . We also require that T satisfy the following saturation condition:
if A↵ 2 T and B is an abelian scheme over S admitting an isogeny (resp. prime-
to-N isogeny) p : B ! A↵ (resp. p : A↵ ! B) then B is isomorphic to some A�

with � > ↵ (resp. ↵ > �) in such a way that p corresponds to p�↵ (resp. p↵�). To
avoid trivialities, we assume deg p↵� > 1 whenever ↵ > �. We also do not require
that the {A↵} be distinct; indeed, we require that the isogeny (n) = multiplication
by n:

(n) : A↵ ! A↵

be an isogeny in the tower (resp. provided (n, N) = 1). Finally, we assume that,
if ↵ > �1,�2, and Ki = Ker(p↵�

i

), i = 1, 2, then K1 ⇢ K2 , �1 � �2. We let
T̂ = Â↵, for any ↵ 2 ⌃, where Â↵ is the isocompletion defined in 1.4.
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A polarized tower (T ,P) is a tower T = {A↵} and a collection L↵/A↵ of sym-
metric relatively ample line bundles, 8↵ 2 ⌃, with isomorphisms

'↵� : p ⇤↵� (L�)
⇠�! L↵

satisfying '↵� � '�� = '↵� . We require furthermore that L↵ be totally symmetric
for all but finitely many ↵. We also make the following saturation requirement:
Let A↵ 2 T ; let B be an abelian scheme over S admitting an isogeny p : B ! A↵

(resp. p : A↵ ! B); one can also place restrictions on the degree as in the previous
paragraph. Suppose there exists a line bundle LB/B such that p ⇤ L↵ ' LB (resp.
p ⇤ LB ' L↵). As above, we have an isomorphism � : B

⇠�! A� , for some � 2 ⌃,
and we assume that LB ' �⇤(L�). Given an isogeny p↵�, we let K̃↵� = K̃(L↵, L�)
be the subgroup scheme of G(L↵) defined in 2.11; then Z(K̃↵�)/K̃↵� ' G(L�).

The symbol P above is used to denote the polarization, or the set {L↵}↵2⌃. The
hypothesis of saturation implies easily (cf. [M1], I, p. 293) that L↵ is of degree 1
for (exactly) one ↵ 2 ⌃.

Any pair (A,L) over S, with L totally symmetric and relatively ample, generates
a polarized tower over S in the obvious way. If (A0, L0) is isogenous to (A,L) , in
the sense that there exists an isogeny p : A ! A0 such that p ⇤ (L0) ' L, then the
towers generated by (A,L) and (A0, L0) are isomorphic. Thus we may speak of an
isogeny class of polarized towers.

3.4. If (T ,P) is a polarized tower, then the locally free sheaves ⇡↵,⇤(L↵) form an
inverse system over S:

'↵�,⇤ : ⇡↵,⇤(L↵) ! (⇡↵,⇤(L↵))K̃
↵�

⇠�! ⇡�,⇤(L�)

and we may take the inverse limit

⇡⇤(P) = lim �
↵
⇡↵,⇤(L↵).

The fiber at x 2 S of ⇡⇤(P) is just the inverse limit of the spaces of sections of all
the line bundles L↵/A↵.

Let V f (T ) = Â↵(t), for any ↵ 2 ⌃, (notation (1.4.1)), viewed as a sheaf in the
Zariski topology on S. Then V f (T ) is canonically isomorphic to the étale homology
group

V t(T ) ' (⇡`R�1⇡↵,⇤(Z`))⌦Q

for any ↵ 2 ⌃. Assuming T has a polarization P as above, represent x 2 V f (T ) as
a limit

x = (x↵)↵2⌃ x↵ 2 A↵(tors),

and let
⌃x = {↵ 2 ⌃ | x↵ 2 H(L↵)}.

We define the Heisenberg group scheme of (T ,P) to be the group scheme G(P)
whose T -valued points, for T a scheme over S, are pairs

(x, {'↵}↵2⌃
x

) x = (x↵) 2 V f (T ),
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'↵ : T ⇤x
↵

(L↵) ⇠�! L↵.

We require the isomorphisms '↵ to satisfy natural compatibility conditions, as in
[M1], §7. There is an exact sequence of sheaves in the Zariski topology

(3.5) 1 ! Gm,S ! G(P) ! V f (T ) ! 1.

For any ↵ 2 ⌃, the lattice K(↵) = ker(Â↵(t) ! A↵(tors)) ⇢ Â↵(t) ' V f (T )
lifts canonically to a subgroup scheme K̃(↵) ⇢ G(P). In [M1], II, p. 103 ↵. (where
our K̃(↵) is denoted K(↵)), Mumford shows that Z(K̃(↵))/K̃(↵), where Z(K̃(↵))
is the centralizer of K̃(↵) in G(P), is canonically isomorphic to G(L↵).

In order to continue, we provisionally choose an isomorphism

 : Af/Ẑ

⇠�! lim�!
n

µn
def.= µ1.

Let G(g, ) be the standard Heisenberg group on the finite adeles:

G(g, ) = {(↵, x, `) | ↵ 2 Gm, x, ` 2 (Af )g},

with multiplication

(↵1, x1, `1) · (↵2, x2, `2) = (↵1 · ↵2 ·  (tx1 · `2), x1 + x2, `1 + `2).

In analogy with (2.8), there is a natural representation

⇢ : G(g, ) ! Aut(Sg)

whereSg is the Schwartz space of locally constant, compactly supported Q

ab-valued
functions on (Af )g. (The groups Aut(Sg) and G(g, ), as well as the representation
⇢ , have interpretations in the category of schemes over Q: cf. Appendix to §4.)

3.7. The comparison of ⇢ with the actions on finite levels is worked out in detail
in [M1], II, pp. 110-111. Let U ⇢ V be two lattices in Q

g; let Û = U⌦Af ⇢ (Af )g,
V̂ = V ⌦Af ⇢ (Af )g. Define Sg(U, V ) to be the space of functions on (Af )g with
support in V̂ , constant modulo Û . We say (U 0, V 0) ⇢ (U, V ) if U ⇢ U 0 ⇢ V 0 ⇢ V ;
then we have maps

Res : Sg(U, V ) ! Sg(U, V 0); Tr : Sg(U, V 0) ! Sg(U 0, V 0),

where Res is restriction of functions on V to functions on V 0, and Tr(f) =R
U 0/U

f(u)du, where du is Haar measure on U 0/U with
R

U 0/U
du = 1. In terms

of these two maps, we may define

Ŝg = lim �
U⇢V

Sg(U, V ).

Given (U, V ) as above, we may identify V̂ /Û ' K(�) for some � as in §2; in terms
of this identification, Sg(U, V ) is isomorphic to V�. Let K(U, V ) = {1}⇥Û⇥⇥V̂ ? ⇢
G(g, ), where

V̂ ? = {y 2 (Af )g |  (tx · y) = 18x 2 V̂ }.
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Then Z(K(U, V ))/K(U, V ) ' G(�). One sees easily that Sg(U, V ) = (Sg)K(U,V ),
and that the corresponding action of G(�) ' Z(K(U, V ))/K(U, V ) on V� ' Sg(U, V )
is just (2.8).

Suppose g(U 0, V 0) ⇢ (U, V ) and V̂ 0/Û 0 ' K(µ). The map Tr�Res : Sg(U, V ) ! Sg(U 0, V 0)
coincides with projection onto the K(U 0, V 0)-invariant subspace. We have an action
of

lim �
U⇢V

Z(K(U, V ))/K(U, V ) ' G(g, ) (cf. [M1], II, p. 103)

on Ŝg = lim �S
g(U, V ) induced from the actions of G(�) ' Z(K(U, V ))/K(U, V ) on

V� ' Sg(U, V ) for all (U, V ); this action is exactly ⇢ .
As in the case of finite level, we have the following data:

(3.8) A skew symmetric pairing eP : V f (T )⌦ V f (T ) ! Gm;
(3.9) involutions ��1 : G(P) ⇠�! G(P), D�1 : G(g, ) ⇠�! G(g, ).

3.10. A symmetric ✓-structure on (T ,P), of type  , is an isomorphism

c : G(P) ⇠�! G(g, )

which restricts to the identity on the mutual center Gm and which satisfies

c � ��1 = D�1 � c.

As explained in [M1],II, p. 106, there is a one-to-one correspondence between
symmetric ✓-structures of type  , and full level structures

� : V f (P) ⇠�! (Af )g ⇥ (Af )g,

under which the bilinear pairing eP on the left-hand side corresponds to the pairing

(x1, y1)⌦ (x2, y2) 7!  (tx1 · y2 � tx2 · y1).

Such a level structure � will be called symplectic (of type  ).
In analogy with Proposition 2.9, we have

3.11. Proposition. : Let (T ,P) be a polarized tower, and let

c : G(P) ⇠�! G(g, )

be a symmetric ✓-structure of type  . There is a unique line bundle K/S, and an
isomorphism of G(g, )-modules

⇡⇤(P) ⇠�! Ŝg ⌦Qab K

where G(g, ) acts trivially on K and through ⇢ (resp., through the isomorphism
c�1) on Sg (resp., on ⇡⇤(P). This isomorphism is unique up to multiplication by
a scalar in �(S,O⇤S).

Proof. : One simply takes the limit over the corresponding ✓-structures at finite
level, checking that they are compatible by using 3.7 and the commutativity of
(2.11.2). We observe that the existence of a symmetric ✓-structure of type  over
S implies that S is a scheme over Spec(Qab). We will account for this below.
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4. Construction of the bundle of forms of weight 1
2

Let N � 3 be a positive integer, and define Mg
N , ⇡ : Ag

N !Mg
N , [⇤]g, and ↵g

N

as in §1. The polarization [⇤]g defines at each fiber Ag
N,x of Ag

N/Mg
N an algebraic

equivalence class [⇤]gx of ample line bundles on Ag
N,x of degree one. For any ⇤ 2 [⇤]gx

, let Lg
N,x = ⇤⌦ (�1)⇤⇤; then Lg

N,x depends only on the algebraic equivalence class
[⇤]gx, and is totally symmetric (cf. 3.2). This construction globalizes to define
a relatively ample, totally symmetric line bundle Lg

N over Ag
N . A priori, Lg

N is
determined only up to tensoring with the pullback of a line bundle on Mg

N . Let
" : Mg

N ! Ag
N be the zero section. We normalize Lg

N by requiring that

"⇤(Lg
N ) ' OMg

N

;

then Lg
N is determined uniquely up to isomorphism.

Pick a positive integer d � 3, and let L = Lg,d be the pullback of Lg
N under

multiplication by d. Let � be the type of L. We assume N large enough so that

(4.1) H(L⇥2) ⇢ Ag
N [N ],

and we assume d is the largest integer for which (4.1) holds.
Using  , we may define an isomorphism, for any d0 2 Z:

F : Z/d0Z

⇠�! Ẑ/d0Z; F (a)(b) =  (d�1
0 ab), a, b 2 Z/d0Z.

In this way, we may define likewise

F : K(�) ⇠�! K̂(�).

We then have a group G(�, ), whose points are given by Gm ⇥K(�)⇥K(�), with
multiplication induced from 2.5 via F .

The remarks in [M1] I, pp. 317-320 imply that the hypothesis (4.1) allows us to
define a unique symmetric ✓-structure

� : G(L) ⇠�! G(�, )Mg

N, 

which reduces mod centers to the restriction of ↵g
N to H(L) ⇢ H(L2). It thus

follows from Proposition 2.9 that there exists a canonically defined line bundle
⇥N, over Mg

N, , and an isomorphism

(4.2) Sch : ⇡⇤L⌦⇥N, 
⇠�! V� ⌦OCalMg

N, 

.

We recall that Sch intertwines the action of G(L) on ⇡⇤L with the action of G(�, )
on V�, and is uniquely determined up to a scalar in �(Mg

N, ,OCalMg

N, 

), which is
isomorphic to Gm except when g = 1 (the case g = 1 will be taken care of ??? when
we discuss Fourier expansions, in §7 below).

We let L⇥ = L ⌦ ⇡⇤⇥N, . Then L⇥ is relatively very ample, since d � 3, and
we have an imbedding over Mg

N, :

(4.3) Ag
N, ,! PMg

N, 

(⇡⇤L⌦⇥N, ) ⇠�! P(V�)⇥Mg
N, ,
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where the second isomorphism is Sch.
Denote by jthe composite of (4.3) with projection on the first factor:

j : Ag
N, ! P(V�).

Then

(4.4) (j � ") ⇤O(1)P(V
�

) ' ⇥N, .

The content of [M1], §6, is the identification of the image of j � " in P(V�). For
us, the important point is a much more elementary fact: namely, that the image of
j � " is a moduli space of a slightly lower level (on the order of N/2). This is not
really di�cult to make explicit, but is su�ces for our purposes to work in the limit.

Thus, let Mg, Ag be as in 1.3, and define Lg likewise. Define Lg,d as above. The
polarized abelian scheme (Ag,Lg) defines a polarized tower, in the sense of 1.2, in
which the pairs (g, Lg,d), d = 1, 2, . . . form a set of cofinal objects. We denote this
polarized tower (T g,Pg) and define Âg as in 1.4.

Let Âg
 be the restriction of Âg to Mg

 . There is a universal full level structure
on Âg

 :

(4.5) ↵g : Âg
 (tors) ⇠�! V ⌦AfMg

 

under which the skew symmetric pairings eP and <,> correspond. Let

⇡⇤P = lim �
d

⇡⇤Lg,d

as above. As in 3.10, we have a unique symmetric ✓-structure � : G(P) ⇠�! G(g, )
compatible with ↵g. Proposition 3.11 provides us with a line bundle ⇥ on Mg

 ,
and an equivariant isomorphism

Sch : ⇡⇤P ⌦⇥ ⇠�! Ŝg ⌦OMg

 

.

This induces an imbedding

(4.6) Âg
 ,! PMg

N

, (⇡⇤⇥ ) ⇠�! P(Ŝg)⇥Mg
 

Let # : Âg
 ! P(Ŝg) denote projection on the first factor. The composite of the

identity section " : Mg
 ! Âg

 , followed by # , defines a morphism also denoted
# : Mg

 ! P(Ŝg). The following theorem follows directly from the remarks on p.
82 of [M1], II:

Theorem 4.7 (Mumford). : The morphism # : Mg
 ! P(Ŝg is a locally closed

immersion; the bundle ⇥ = #⇤ (OP(Ŝg)(1)).
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4.8. The action of G(g, ) on Ŝg induces a projective representation P(! ) of
G(Af ) on Ŝg, first defined by Weil. For our purposes it is most convenient to
work at finite levels. Let

B0(g, ) = {� 2 Aut(G(g, )) | � restricts to the identity on Gm}.

Now B0(g, ) is canonically the semi-direct product of G(Af ) and the group of
inner automorphisms of G(g, ). (Actually in [W], pp. 180-183, 188, Weil shows
that B0(g, ) is the semi-direct product of G(g, ) and the pseudosymplectic group
over Af , but since we are working in characteristic zero, the pseudosymplectic
group and G(Af ) are canonically isomorphic. His calculations make sense in the
category of algebraic groups over Q, as described in the appendix to §4.)

Thus G(Af ) acts naturally on G(g, ), and for � 2 G(Af ), we can define a
representation

⇢� : G(g, ) ! Aut(Ŝg) : ⇢� (�) = ⇢ (��1�).

This can be interpreted in terms of finite levels as follows. Let U ⇢ (Af )g be a
lattice, and let �(U) ⇢ G(Af ) be the stabilizer of the lattice U⇥U ⇢ (Af )g⇥(Af )g.
Let S(U) be the Schwartz space of U , and let G(U, ) = Gm ⇥ U ⇥ U? ⇢ G(g, ),
with multiplication law (3.6). We denote by ⇢ ,U the natural representation of
G(U, )onS(U).

Now the map G(Af ) ! B0(g, ) takes �(U) to the stabilizer of G(U, ). As
above, each � 2 �(U) defines a representation ⇢� ,U on S(U). By an analogue of
the Stone-Von Neumann theorem (or a generalization of Proposition 2.7), one sees
that ⇢ ,U and ⇢� ,U are equivalent irreducible representations. The correspond-
ing projective representations are thus canonically isomorphic. We thus obtain a
unique morphism P(! ,U )(�) : P(S(U)) ! P(S(U)) which intertwines ⇢ ,U and
⇢� ,U ; P(! ,U ) is a projective representation of �(U).

On the other hand, �(U) = �(n�1U), n = 1, 2, . . . . We thus obtain a compatible
system of projective representations P(! , n�1U) of �(U), n = 1, 2, . . . , where the
map S(n�1U) ! S(m�1U), for m ÷ n, is given by restriction of functions. In the
limit, we have a projective representation P(! , (U)) of �(U) on lim �n(n�1U) ' Ŝg;
for any � 2 �(U), P(! , (U)) intertwines the restrictions to G(U, ) of ⇢psi and ⇢� .

Now every element of G(Af ) belongs to �(U) for some lattice U . If � 2 �(U) \
�(V ), then the projective representations P(! ,(U)) and P(! ,(V )) both intertwine
⇢ |G(U\V ) and ⇢� |G(U\V ), hence coincide. In this way we obtain a projective
representation P(! ) of G(Af ) on Ŝg.

In [W], Weil proves that P(! ) (or rather the analogous representation on the
Schwartz space) lifts to a genuine representation of a double cover of G(Af ). In
general, we prefer to work with the tautological representation associated with the
projective representation:

! : G̃(Af ) ! Aut(Ŝg).

Here G̃(Af ) is an extension of G(Af ) by Gm defined by the projective represen-
tation P(! ). Thus G̃(Af ) acts on OP(Ŝg)(1), extending the tautological action of
Gm, given by t 7! multiplication by t. We explain in the appendix to §4, below,
how G̃(Af ) may be regarded as an extension in the category of group schemes, and
how to define the structure of algebraic variety on P(Ŝg).
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Proposition 4.9. . The action of G(Af ) on P(Ŝg) restricts to the canonical action
on Âg

 . In particular, there is an action of G̃(Af ) on ⇥ which covers the action of
G(Af ) on Mg

 . The restriction of this action to the subgroup Gm is the tautological
action.

Proof. The proposition follows immediately from the commutativity of the diagram

(4.9.1)

G(P) ����! Aut(⇡⇤P)

��c
??y

??y

G(g, )
⇢�
 

⌦1
����! Aut(Sg ⌦Qab K)

for all � 2 G(Af ). Here c and the right-hand vertical arrow are as in Proposition
3.11, and � � c is c followed by the action of � 2 G(Af ) ⇢ B0(g, ).

4.10. Remark. It is possible, a priori , that the extension G̃(Af ) depends on
the choice of character  . There is an easy way to see that the isomorphism class
of G̃(Af ) is independent of  . Let B̄0(g, )1 denote the normalizer in Aut(Ŝg) of
⇢ (G(g, )). Let B̄0(g, ) ⇢ B̄0(g, )1 be the subgroup of elements ↵ for which
there exists an increasing filtration

{0} ⇢ U1 ⇢ U2 ⇢ · · · ⇢
[

i

Ui = (Af )g

such that ↵ stabilizes ker(Ŝg ! S(Ui)) for all i. There is an exact sequence of
group schemes

(4.10.1) 1 ! Gm ! B̄0(g, ) ↵�! B0(g, ) ! 1;

the surjectivity of ↵ is equivalent to the existence of the projective representation
P(! ). We have G̃(Af ) = ↵�1(G(Af )) ⇢ B̄0(g, ); it is canonically determined by
G(g, ).

But the subgroup ⇢ (G(g, )) ⇢ Aut(Sg) is independent of  . In fact, given
a non-trivial  , every non-trivial additive character of Af is of the form  t(x) =
 (t�1x), for some t 2 Af,⇥. Now the map jt : G(g, ) ! G(g, t), defined in the
coordinates (3.7) by jt(↵, x, `) = (↵, x, t`), is an isomorphism of groups. Obviously

(4.10.2) ⇢ t(jt(↵, x, `)) = ⇢ ((↵, x, `)),8(↵, x, `) 2 G(g, ).

It follows that B̄0(g, ) and B̄0(g, t) are canonically isomorphic, for every t 2
Af,⇥. Using the exact sequence (4.10.1), we see that G̃(Af ) is independent of the
choice of  .

Appendix to §4: G̃(Af ) as an ind-group scheme over Q

In order to explain how to interpret the exact sequence

1 ! Gm ! G̃(Af ) ! G(Af ) ! 1
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as an extension of group schemes, we have first to describe the ind-group scheme
structure on the totally disconnected group G(Af ). The procedure described here
is valid for any locally compact totally disconnected group �, and provides such a
� with the structure of group scheme over Spec(Z).

Thus let � be any totally disconnected group, and let Z� be the ring of locally
constant compactly supported Z-valued functions on �. Multiplication in the group
� allows one to define a canonical coalgebra structure on Z�, making Spec(Z�) into
a group scheme.

Lemma 4.A.1. The set � is canonically isomorphic to the set of global sections
Spec(Z) ! Spec(Z�). The Zariski topology on the latter induces the usual topology
of locally compact totally disconnected group on �.

Proof. The lemma is obvious for � finite. Suppose � = lim �i �i , with �i finite for
all i. If C ⇢ � is a closed subset, then C = lim �i Ci, where Ci ⇢ �i is the set of
zeroes of the ideal Ji ⇢ Z�

i

, say. Then C is obviously the set of zeroes of the ideal
lim�!i Ji ⇢ Z�. Conversely, if J = lim�!i Ji is an ideal in Z� with zero set C, then C
is easily seen to be the inverse limit of the zero sets Ci of Ji. The lemma follows
for profinite �.

Now let K ⇢ � be a profinite open subgroup, and let ⌃ be a set of coset repre-
sentatives for �/K. Then we have

(4.A.1.1) � =
a

�2⌃

�K; Z� =
X

�2⌃

Z�K

where Z�K ' ZK is the ring of locally constant functions on �K. The lemma
follows immediately from (4.A.1.1) and the special case of profinite groups.

4.A.2. In defining the projective space P(Ŝg) over Spec(Q), we view the infinite
dimensional vector space Ŝg as the inverse limit of finite dimensional subspaces
Sg(U, V ), as in §3. Then the projective space P(Ŝg) over Spec(Q) is the projective
spectrum of the (non-noetherian) graded ring

lim�!
U⇢V

Q[Q[V/U ]] = Q[Q(Af )g]].

4.A.3. We henceforward let � = G(Af ), and identify � with the group scheme
Spec(Q ⌦ Z�) over Q. The projective representation of G(Af ) on Ŝg is deduced
from actions on finite levels, as in §4.10. It follows from Lemma 4.A.1 and the
definition in 4.A.2 that

Lemma 4.A.4. The Q

ab-rational projective representation P(! ) of G(Af ) on
P(Ŝg) is a continuous action in the Zariski toplology.

Standard considerations now imply

Proposition 4.A.5. : There exists an ind-group scheme G̃(Af ) over Q, an exact
sequence

1 ! Gm ! G̃(Af ) ! G(Af ) ! 1

in the category of ind-group schemes , and a representation

! : G̃(Af ) ! Aut(Ŝg),
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continuous in the Zariski topology, such that ! (t) = t, t 2 Gm, and such that
the induced action of G(Af ) on P(Ŝg) coincides with the projective representation
P(! ) defined in §4.

5. Extending to GSp

Let GSp = GSp(V,<,>) be the group of symplectic similitudes of V . We
write GSp = GSpg when it is necessary to emphasize the dimension 2g of V . Let
⌫ : GSp ! Gm be the symplectic multiplier. Let T ⇢ GSp be the subgroup

{�(t) =
✓

1 0
0 t

◆
} ⇢ GSp.

For g 2 G(Af ), 2 Af,⇥, we let gt = �(t)�1 · g · �(t). We let  ,  t, and jt be as in
4.10. Now G(Af ) acts on G(g, t) for all t. It is easy to see that, for � 2 G(g, ),
g 2 G(Af ), and t 2 Af,⇥, we have

(5.0.1) gt(�) = (jt)�1(g(jt(�)))

The equality (5.0.1) and the considerations in Remark 4.10 provide a natural iden-
tification of the projective representations g 7! P(! (gt)) and g 2 P(! t(g)). In
particular, the action of T (Af ) on G(Af ) by conjugation lifts to a canonical action
on G̃(Af ). Let G̃Sp(Af ) be the semi-direct product of T (Af ) with G̃(Af ), defined
in terms of this action. Then G̃Sp(Af ) is am extension of GSp(Af ) by Gm in the
category of algebraic group schemes over Q. Cf. [PSGe], where something similar
is worked out in the case g = 1; the general case is worked out by Vigneras in [V],
using explicit cocycles.

The G̃(Af )-bundle ⇥ over the connected component Mg
 of Mg apparently

does not extend to a bundle over Mg homogeneous under G̃Sp(Af ), essentially for
the same reason that the representation !psi does not extend to the larger group.
In order to get around this latter obstacle, a number of authors replace !psi by
the induced representation from G̃(Af ) to G̃Sp(Af ). In our setting the natural
analogue to the induced representation seems to be a certain Q

⇥ torsor over Mg,
which we now construct.

We begin by noting thatMg is the Shimura variety attached to the pair (GSp,S±),
where S± is the union of the Siegel upper and lower half planes, considered as a
homogeneous space under GSp(R). In Deligne’s formulation of Shimura’s theory of
canonical models, recalled briefly in §7, below, S± is a GSp(R)-conjugacy class of
homomorphisms of the real torus S

def= RC/RGm into GSpR which satisfies certain
axioms.

5.1. When g = 0, GSp = Gm and S± is just the norm homomorphism N :
RC/RGm,C ! Gm,R. The corresponding Shimura variety, denoted M(Gm, N), is
the profinite scheme

lim �
N

R

⇥
Q

⇥\A⇥/(1 + N Ẑ) ' R

⇥
Q

⇥\A⇥,

all of whose points are rational over Q

ab. The Q-structure on M(Gm, N) is defined
by the obvious action of Gal(Qab/Q) ' Ẑ

⇥ on R

⇥
Q

⇥\A⇥: for e 2 Ẑ

⇥, a 2
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R

⇥
Q

⇥\A⇥, we have e(a) = e�1 ·a. (Here the isomorphism of Gal(Qab/Q) with Ẑ

⇥

is given by the inverse of the cyclotomic character, as in (1.1).) Then Af,⇥ acts
naturally and Q-rationally on M(Gm, N).

Any abstract group � defines a constant group scheme Spec(Z�) over Spec(�),
where Z� is the direct sum of as many copies of Z as there are elements in �.
(This is a special case of the construction in the appendix to §4.) Let � = Q

⇥,
and let M̃(Gm, N) be Af,⇥, viewed as a Q

⇥-torsor over M(Gm, N). The action
of Gal(Qab/Q) on M(Gm, N), defined above, lifts in the obvious way to an action
on M̃(Gm, N), which thus becomes a Q-rational Q

⇥-torsor over M(Gm, N). The
action of Af,⇥ on M(Gm, N) obviously lifts to M̃(Gm, N).

We write M , M̃ instead of M(Gm, N), M̃(Gm, N), respectively. Let M2 be the
quotient of M̃ by the action of � = Q

⇥
+ ⇢ Q

⇥. Then M2 is a double cover of M ,
defined over Q.

The Shimura variety M has a modular interpretation analogous to that of Mg.
We let T f (Gm) be the product over all primes ` of the `-adic Tate modules of the
commutative group scheme Gm, V f (Gm) = T f (Gm) ⌦ Q. Then M parametrizes
“isogeny classes” of isomorphisms ↵ : Af

⇠�! V f (Gm), where ↵,↵0 are isogenous
if ↵(x) ⇠= ↵0(a · x), for some a 2 Q

⇥. Clearly, M̃ parametrizes isomorphisms
↵ : Af

⇠�! V f (Gm), and the morphism M̃ ! M just takes ↵ to its isogeny class.
The actions of Gal(Q̄/Q) on M̃ and M derive from this modular interpretation.
The natural action of Af,⇥ on M̃ is given by ↵ 7! (x 7! ↵(t�1x) def= ↵t(x)).

Note that ↵ is uniquely determined by the composition

Af
⇠�! V f (Gm) ! V f (Gm)/T f (Gm) ' µ1.

If we denote this composition  =  ↵, then for each ↵ 2 M̃ we may construct
the group G(g, ) = G(g,↵) with multiplication law (3.6); the hypothesis that  is
trivial on Ẑ is irrelevant. Clearly, G(g,↵) is the fiber at ↵ of a group scheme G(g)
over M̃ , defined over Q. We note that the actions of Af,⇥ on additive characters
and on M̃ correspond: we have  (↵t) = ( ↵)t, in the notation of 4.10.

The action of Af,⇥ on M̃ lifts to an action on G(g), as follows: if (�, x, y)(↵) 2
G(g,↵), t 2 Af,⇥, then let

(5.1.1) t · (�, x, y)(↵) = (�, x, ty)(↵t)

The map (5.1.1) is an isomorphism r(t) : G(g,↵) ⇠�! G(g,↵t).
Finally, M2 parametrizes isomorphisms Af

⇠�! V f (Gm) up to multiplication
by an element of �. The natural map M̃ ! M2 obviously defines an isomorphism
from the subscheme

(5.1.2) M̃2 def= {↵ 2 M̃ |  ↵ : Af ! µ1 is trivial on Ẑ} ⇢ M̃

onto M2. We identify M2 with M̃2, or alternatively with the set of characters
Af/Ẑ ! µ1, by means of this isomorphism. The existence of M̃2 implies that the
�-torsor M̃ ! M2 is trivial .

5.2. Now let g be arbitrary. One defines in the obvious way a natural homomor-
phism of group schemes over M̃ :

(5.2.1) ⇢ : G(g) ! Aut(Ŝg

M̃
)
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such that the fiber at ↵ 2 M̃ is just ⇢ 
↵

. We saw in §4 that G(Af ) acts naturally on
G(g, ), for each  , and therefore acts naturally on G(g), preserving the fibers over
M̃ . On the other hand, if �(t) 2 T (Af ), we let �(t) act on G(g) as the morphism
r(t) of (5.1.1). The equality (5.0.1) shows that these actions of G(Af ) and T (Af )
together define an action of GSpg on G(g), covering the action of GSpg on M̃ 'M2

given by ⌫ : GSpg(Af ) ! Af,⇥. We have defined our Q-structure on M̃ in such a
way as to guarantee that this action of GSpg(Af ) on G(g) is defined over Q.

5.2.2. Similarly, the projective representations P(! ) patch together to define an
action P(!) : G(Af ) ! Aut(P(Ŝg)M̃ ). Again, (5.0.1) implies that this action ex-
tends to an action of GSpg(Af ) on P(Ŝg)M̃ , and this action is again defined over
Q.

5.3. As above, GSpg(Af ) acts on M2 through ⌫ : GSpg(Af ) ! Af,⇥, and there is
a natural GSpg(Af )-equivariant map ⌫0 : Mg ! M2, taking the connected compo-
nent Mg

 to the character  . Composing with the canonical morphism Âg !Mg,
we obtain a GSpg(Af )-equivariant map Âg ! M2. We let M̃g = Mg ⇥M2 M̃ ,
Ãg = Âg ⇥M2 M̃ . Then M̃g (resp. Ãg) is a Q-rational �-torsor over Mg (resp.
Âg), and the actions of GSpg(Af ) on Mg and Âg lift to actions on M̃g and Ãg,
which commute with the action of �. The identity section Mg ! Ãg is denoted
", as in §4.

Now the inclusion Mg
 ⇢Mg, together with the constant map from Mg

 to the
point  2 M̃2 ⇢ M̃ , define a G(Af )-equivariant morphism Mg

 ! M̃g. Similarly,
we have a G(Af )-equivariant map Âg

 ! Ãg.

5.4. The representation ⇢ of (5.2.1) provides us with a (Q-rational) morphism of
schemes over M̃ generalizing Theorem 4.7;

# : Ãg ! P(Ŝg)M̃ .

The fiber of # at the point  2 M̃ is just # . We let ⇥(A) = #⇤(OP(Ŝg)
M̃

),
⇥ = "⇤(⇥(A)). Then ⇥ (resp. ⇥(A) is a Q-rational vector bundle over M̃g, (resp.
Ãg) whose restriction to Mg

 is ⇥ . The construction in 5.2.2 shows that the
action of G̃(Af ) on ⇥ , defined by Proposition 4.9, extends to a Q-rational action
of G̃Sp(Af ) on ⇥, the pullback via " of a Q-rational action on ⇥(A). We have
proved:

Proposition 5.5. There is a Q-rational, G̃Sp(Af ) -equivariant line bundle ⇥ over
the scheme M̃g. The restriction of ⇥ to the subscheme Mg

 ⇢ M̃g is G̃(Af )-
equivariantly isomorphic to ⇥ .

5.6. For n = 0, 1, . . . , let Jn(⇥) denote the bundle of n-jets of ⇥(A); let

J1(⇥) = lim �
n

Jn(⇥).

The action of G̃Sp(Af ) on ⇥(A) defines an action on J1(⇥). Any global section
s of ⇥(A) defines a global section j1(s) of J1(⇥).
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Let D = DÃg

denote the O = OÃg

-algebra of finite-order algebraic di↵erential
operators on Ãg. It follows from the definitions (cf. [H,§7]) that

(5.6.1) J1(⇥) ' (D ⌦O ⇥⇤)⇤,

where we regard D as a right O-module and ⇥⇤ as a left O-module. Here the
right-hand side is viewed as an inverse limit of coherent sheaves, defined by the
order filtation on D.

The isomorphism (5.6.1) makes J1(⇥) naturally into a right D-module: if f 2
�(U, J1(⇥)) ' �(U,Hom(D⌦O ⇥⇤,O)), and � 2 �(U,D), for U open in Ãg, then

f ?�(g) = f(� · g), 8g 2 �(U,D ⌦O⇥⇤).

Let E1(⇥) denote theOÃg

subbundle of J1(⇥) generated by (j1(�(Ãg,⇥(A)))?D,
and let S1(⇥) = "⇤(E1(⇥)). Then the action of G̃Sp(Af ) on M̃g lifts to an action
on S1(⇥). The bundle S1(⇥), together with its natural G̃Sp(Af )-action, will be
the subject of §7 and §8.

6. Relations with the analytic theory

In order to apply the theory developed in the preceding sections to the arithmetic
of the oscillator representation, we must describe the relations between the vector
bundles ⇥ and the analytic theory of theta functions. This material is in principle
well known, having been covered by numerous authors, including [I, M2, M3]. Our
formulation is somewhat di↵erent, however, from those currently available in the
literature. Most of this section will therefore be taken up with definitions; proofs
will be brief.

6.0. Notation. In this section,  A : Q\A ! C

⇥ will be a continuous character;
we denote by  (resp.  1) the restriction of  A to Af (resp to R). We define the
group G(g, A) (resp. G(g, 1)) to be the set C

⇥⇥Ag ⇥Ag (resp. C

⇥⇥R

g ⇥R

g)
with multiplication law (3.6), where  is replaced by  A (resp.  ). Note that
 is necessarily of the form  (x) = e2⇡�x, x 2 R, for some � 2 R. We define
 C : C ! C

⇥ by the formula  C(z) = e2⇡�z, z 2 C, and define G(g, C) (resp.
G(g, C ·  ) to be the set C

⇥ ⇥ C

g ⇥ C

g (resp. C

⇥ ⇥ (C⇥Af )g ⇥ (C⇥Af )g) with
multiplication law (3.6), where  is replaced by  C (resp.  C ⇥  ). Then G(g, C
is a complex Lie group; and Lie(G(g, 1)) is a Lie subalgebra of Lie(G(g, C)).
When necessary, we let Z(G) = C

⇥ ⇢ G(g, ?), ? =  ,  A,  1,  C, or  C ·  . Note
that there is an involution D�1 : G(g, ?) ! G(g, ?), defined as in §3, with any ? as
above.

We let S be the real algebraic group RC/RGm. A Hodge structure on a real
vector space V is a homomorphism h : S ! GL(V ) of real algebraic groups. Then
h defines a Hodge decomposition and a Hodge filtration

VC
M

p,q

V p,q, F pV =
M

p0�p

V p0,q,

where SC acts on V p,q through the character z�pz̄�q. The Hodge structure h is a
complex structure if and only if VC = V �1,0 � V 0,�1.
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Let V = Q

2g as in 1.1; thus G(g, ) is isomorphic as a manifold to V (R)⇥ C

⇥.
Let <,> and GSp = GSp(V,<,>) be defined as in §5. Let

S± = {h : ! GSp(R) | h defines a complex structure on V (R) and
(x, y)h

def= < x, h(i)y > is a positive- or negative-definite symmetric form
on V (R)}.

Then conjugation by GSp(R) makes S± into a homogeneous space for GSp(R),
and it is well known that S± is naturally isomorphic to the union of the Siegel upper
and lower half-planes, introduced in §5. In particular, our notation is consistent.
We let S+ be the subset of S± for which (x, y)h is positive-definite.

6.1. We will be concerned with the following situation. Let H ⇢ G be real Lie
groups such that G/H has a G-invariant complex structure. (In practice, G will be
an adelic group, but the reduction to this case is easy.) The group H is assumed
to be reductive, but G is not, nor is G even assumed to be algebraic. We write
g = Lie(G), h = Lie(H), and

GC = H = C� q+ � q�,

where q+ (resp. q�) corresponds to the holomorphic (resp. anti-holomorphic)
tangent space at the identity coset in G/H.

Let GC denote a complex analytic Lie group with Lie algebra gC, HC the sub-
group of GC corresponding to hC; we assume q+ and q� to be the Lie algebras of
commutative subgroups Q+ and Q�, respectively, of GC, each normalized by HC.
We assume there is a homomorphism G ! GC with finite kernel, contained in H;
let G0 (resp. H 0) be the image of G (resp. H) under this map. Let Q = HC ·Q�;
we assume Q\G0 = H 0 and that the complex structure on G/H is induced by the
natural open immersion G/H ,! GC/Q.

We let � ⇢ G be a discrete subgroup which acts properly discontinuously on
G/H, and we let M = �\G/H. A representation ⇢ : H ! GL(V⇢) determines a
C1 vector bundle [⇢] on M :

[⇢] = �\G⇥ V⇢/H,

where � acts trivially on V⇢ and H acts on G⇥ V⇢ by the formula

(6.1.1) (g, v) · h = (gh, ⇢(h)�1v), g 2 G, v 2 V⇢, h 2 H.

In general V⇢ need not be finite-dimensional, but it should be either a direct sum or
an inverse limit of finite-dimensional H-modules. If U is an open subset of M and E
is a C1 vector bundle over M , we denote by �1(U, E) the space of C1 sections of E
over U . In the cases to be considered below, the bundle [⇢] will have a holomorphic
structure defined as follows. Let p : �\G ! M be the natural projection. For any
open U ⇢M , there is a natural isomorphism
(6.1.2)
Lift : �1(U, [⇢]) ⇠�! {f 2 C1(p�1(U)) | f(gk) = ⇢�1(k)f(g),8g 2 p�1(U), k 2 H}.

We denote the right hand side by C1(U, ⇢), and write C1(⇢) = C1(M, ⇢). The
holomorphic structure on [⇢] will be given by the sheaf associated to the presheaf

(6.1.3) H(U, ⇢) = {s 2 �1(U, [⇢]) | X · Lift(s) ⌘ 0,8X 2 q�}.
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Here q� acts by right di↵erentiation on C1(G). Again, let H(⇢) = H(M, ⇢).
We assume our space M to be endowed with an algebraic structure compatible

with the holomorphic structure defined above, and assume [⇢] to be an algebraic
vector bundle. We let Dan (resp. D) denote the sheaf of analytic (resp. algebraic)
di↵erential operators on M ; let Oan (resp. O) denote the structure sheaf of M as
an analytic (resp. algebraic) variety. Let U (resp. U 0) be the enveloping algebra of
GC (resp. HC � q�). Now the vector bundle of analytic di↵erential operators on
GC/Q is naturally isomorphic to

GC ⇥ (U ⌦U 0 C)/Q,

where C is the trivial U 0-module and the action of H on U is given by the adjoint
representation. There is thus an isomorphism of analytic vector bundles

Dan ' �\G⇥ U ⌦U 0 C/H = [⇢U ],

where ⇢U is the adjoint representation of H on U ⌦U 0 C. More generally, we have

Dan ⌦Oan [⇢]an ' �\G⇥ U ⌦U 0 V⇢/H,

where the action of hC, extended trivially to q�, makes V⇢ naturally into a U 0-
module and where H acts diagonally on U ⌦U 0 V⇢.

Here and in (6.1.6) below, the holomorphic structure is defined by a variant of
(6.1.3): d⇢ is a representation of hCoplusq� (which does not necessarily integrate
to a representation of Q), and the holomorphic sections of [⇢] over an open set U
are those which lift to q�-invariant V⇢-valued functions on p�1(U). For example, in
(6.1.4) d⇢ is the adjoint representation. The same construction works for any finite
dimensional HC � q�-module V⇢.

Of course, D has a filtration O = D0 ⇢ D1 ⇢ · · · ⇢ Di ⇢ . . . by degree of
di↵erential operators. The enveloping algebra U(q+) is isomorphic to the symmetric
algebra S(q+); we denote by Si(q+) ⇢ S(q+) the subspace of tensors of degree  i;
then Dan

i ' �\G⇥ Si(q+)/H.
Let Jn[⇢] (resp. J1[⇢]) denote the bundle of n-jets (resp. the bundle lim �n Jn[⇢]

of infinite jets) of [⇢]. As in (5.6.1), we have

(6.1.5) Jn[⇢] ' (Dn ⌦O [⇢]?)?, J1[⇢] ' (D ⌦O [⇢]?)?

and J1[⇢] is a right D-module. In the category of analytic vector bundles, there is
thus an isomorphism

(6.1.6) J1[⇢] ' �\G⇥ (U ⌦U 0 V ?
⇢ )?/H

where the dual (U ⌦U 0 V ?
⇢ )? is regarded as lim �(Si(q+) ⌦ V ?

⇢ )?. The isomorphisms
of C1 vector bundles:

Si(q+) =
nM

i=0

Symi(q+)

defines a decomposition of C1 vector bundles

(6.1.7)

Jn[⇢] '
nM

i=0

�\G⇥Hom(Symi(q+), V⇢)/H

'
nM

i=0

Symi⌦1
M ⌦ [⇢].
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Here H acts by the adjoint action on Symi(q+) and by ⇢ on V⇢. Note that the
lower isomorphism is not holomorphic. Let ⇢(i) denote the natural action of H on
Hom(Symi(q+), V⇢). We have analogously an isomorphism of C1 vector bundles

(6.1.8) Dan '
nM

i=0

�\G⇥ Symi(q+)/H '
1M

i=0

SymiTM

where Hacts trivially on Symi(q+) and TM is the tangent bundle to M . In terms
of (6.1.7.8), the right action of Dan on J 0[⇢] is given by the natural pairing

(6.1.9)
1M

i=0

SymiTM ⌦
M̂1

i=0
Symi⌦1

M ⌦ [⇢]

defined by contraction of tangent and cotangent vectors; here
L̂

denotes the com-
pleted direct sum.

6.1.10. We let jn : [⇢] ! Jn[⇢] denote the di↵erential operator which takes a
section of [⇢] to its n-jet, n  1. Let s 2 �1(M, [⇢]), and let E1(s) denote the O-
subbundle of J1[⇢] generated by j1(s) ?D. Let p : �\G ! M be the projection,
as above. The fiber of E1(s) at the point p(g) is canonically isomorphic to the
subspace of Hom(U, V⇢) given by

D 7! r(X)DLift(s)(g), X 2 U.

Here X 7! r(X) denotes the right action of U on C1(G). If we denote by V (s) the
U -submodule r(U)Lift(s) ⇢ C1(�\G), then the fiber of E1(s) at p(g) is naturally
a U 0-submodule of Hom(V (s), V⇢). Of course, if s is holomorphic, then V (s) is a
quotient of the “generalized Verma module” U ⌦U 0 V ?

⇢

Write ! = ⌦1
M . and let �i : [⇢] ! Symi!⌦[⇢], i = 0, . . . , n be the C1 di↵erential

operator obtained as the composition of jn with the projection on the i-th factor
in (6.1.9). Let �i : C1(⇢) ! C1(⇢(i)) be the homomorphism which makes the
following diagram commute:

�1([⇢]) ⇠����!
Lift

C1(⇢)
??y�i

??y�i

�1(Symi! ⌦ [⇢]) ⇠����!
Lift

C1(⇢(i))

If f 2 C1(⇢), we have

(6.1.11) �i(f)(X) = X · f 2 C1(G, V⇢) 8X 2 Symi(q+)

6.2. In this section, we apply the above theory when G = G(g, A), H = Z(G)
(notation 6.0). Since  is trivial on Q, the set H(Q) def= 1 ⇥ Q

g ⇥ Q

g ⇢ G(g, A)
is a subgroup, which serves as our �. We let ⇢(�1) be the character t 7! t�1 of
Z(G), and write

(6.2.1) T̂ = H(Q)\G(g, A)/C

⇥ (= M , as above), L̂ = [⇢(�1)]
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Let K ⇢ (Af )g ⇥ (Af )g be an open compact subgroup such that {1} ⇥ K ⇢
C

⇥ ⇥ (Af )g ⇥ (Af )g ' G(g, ) is a subgroup of G(g, ). Then we may identify K

with the subgroup {1}⇥K ⇢ G(g, ). Let T (K) = T̂ /K, L (K) = L̂ /K. Then
T (K) is isomorphic to the compact torus R

2g/K \ Q

2g and L (K) is a complex
line bundle over T (K). Any h 2 S+ defines a complex structure on R

2g and hence
on the torus T (K); it is well known that T (K), with this complex structure, is
isomorphic to an abelian variety, which we denote Ah, (K). We let Âh, be the
isocompletion of Ah, (K), for any K. Then Âh, does not depend on K and is
topologically isomorphic to T . Moreover, the isomorphism Âh, 

⇠�! T defines a
full level structure Âh, (t) ⇠�! V ⌦Af , and is thus an isomorphism of topological
spaces with G(g, )-action.

We let F •h (V ) denote the Hodge filtration (6.0) on VC defined by h. Then Qh
def=

F 0
h (V )⇥ C

⇥ is an analytic subgroup of G(g, C ·  ), and we have naturally

(6.2.2) Âh, ' H(Q)\G(g, C ·  )/Qh, L̂ = H(Q)\G(g, C ·  )⇥ C/Qh.

Here the subgroup F 0
h (V ) of Qh acts trivially on C. This shows that L̂ is naturally

a holomorphic vector bundle over Âh, ; with this holomorphic structure we write
L̂h, instead of L̂ . In fact, it is well known that L̂h, is even algebraic.

In the notation of 6.1, we have GC = G(g, C · ), Q = Qh. We write u+
h = V �1,0,

u�h = V 0,�1, instead of q+, q�. We write H(L̂ ) for H(⇢(�1)) (6.1.3), and define
Lift : �(Âh, , L̂ ) ⇠�! H(⇢(�1)) as in (6.1.2).

We define the Schwartz space S(Rg) in the usual way (cf. e.g., []), and let
S(Ag) = S(Rg)⌦ Sg, with Sg as in §3. Then G(g, A) acts on S(Ag):

(6.2.4) ⇢ A(↵, x, `)�(y) = ↵ ·  A(t` · y)�(x + y),↵ 2 C

⇥, x, `, y 2 Ag.

We let d⇢ C : Lie(G(g, C)) ! End(S(Rg)) denote the corresponding Lie algebra
action; the action of Lie(G(g, C)) on S(Ag) is also denoted d⇢ C . The following
lemma is well known (cf. [,]):

Lemma 6.2.5. . For any h, there is a unique function �h 2 S(Rg) such that (i)
d⇢ C(u�h )�h = 0, and (ii) �h(0) = 1.

Now for any � 2 S(Ag), the series

(6.2.6) ⇥ A(�)(g) =
X

⇠2Qg

⇢ A(g)�(⇠), g 2 G(g, A)

converges absolutely and uniformly on compact subsets to a C1 function on G(g, A)
([], p. ), which satisfies

(6.2.7) ⇥ A(�)(�gt) = t⇥ A(�)(g), 8� 2 H(Q), g 2 G(g, A), t 2 Z(G).

In particular, if Phi = �h ⌦ �f , with �f 2 Sg, then ⇥ A(�) 2 H(L̂ ). We thus
obtain a homomorphism

S : Sg ! �(Âh, , L̂ );S (�f ) = Lift�1⇥ A(�h ⌦ �f ).
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6.2.8. Let K ⇢ (Af )g⇥(Af )g be an open compact subgroup such that {1}⇥K ⇢
C

⇥ ⇥ (Af )g ⇥ (Af )g ' G(g, ) is a subgroup of G(g, ). Now the involution D�1

of G(g, C), mentioned in 6.0, descends to multiplication by �1 on Ah, (K). Then
the homomorphism D�1⇥1 : G(g, C)⇥C ! G(g, C)⇥C induces an isomorphism
L (K) ⇠�! (�1)?L (K). One verifies immediately that L (K) is a totally sym-
metric line bundle over Ah, (K), for all K. Moreover, if Z(K) is the centralizer in
G(g, ) of {1}⇥K, then Z(K) acts on the right on L (K), and this action defines
a canonical isomorphism Z(K)/K

⇠�! G(L (K)) (cf. [M2], p. 237).
We let Th, be the tower {Ah, (K)},Ph, the polarization defined by {L (K)}.

It follows from the above remarks that the polarized tower (Th, ,Ph, ) comes
equipped with a canonical symmetric ✓-structure G(Ph, ) ⇠�! G(g, ). There is
thus a canonical action of G(g, ) on lim�!�(Ah, (K), L (K)) = �(Âh, , L̂ ), given
in terms of the realization (6.1.1) by right multiplication. We denote this action ⇢0.

Lemma 6.2.9. The homomorphism S : Sg ! �(Âh, , L̂ ) is an isomorphism,
and intertwines the representation ⇢ of G(g, ) on Sg with the action ⇢0.

Proof. Evidently, for any �f 2 Sg, � = �h ⌦ �f , we have Lift(⇢0(h)S (�))(g) =
⇥ A(�)(gh) = ⇥ A(⇢ (h)�)(g) by (6.2.6). This implies that S (Sg) is a G(g, )-
stable subspace of �(Âh, , L̂ ). Since S is not identically zero (cf. []) and the
action of G(Ph, ) on �(Âh, , L̂ ) is irreducible (cf. [M1], II, p. 109), it follows that
S is an isomorphism.

6.3. Let Oh, denote the structure sheaf of Âh, , and let Dh, denote the Oh, -
module of finite order algebraic di↵erential operators on Âh, .

We write C1,i(h, ) for C1(⇢(�1)(i)), i = 0, 1, . . . ,, (cf. (6.1.10)), and set

�i(h, )) = �1(Âh, , Symi!h, L̂ )).

We define Lift : �i(h, ) ! C1,i(h, ) as above. Let

�i : C1,0(h, ) ! C1,i(h, )

be the homomorphism defined in 6.1.10. The following lemma follows immediately
from (6.1.11):

Lemma 6.3.1. Let � = �h ⌦ �f , with �f 2 Sg. Then

�i(⇥ A(�))(X)(g) = ⇥ A(d⇢ C(X)�)(g)8g 2 G(g, A), X 2 Symi(u+
h ),

where we regard Symi(u+
h ) as a subspace of U and where d⇢ C is the action of U

on S(Rg) determined by (6.2.4).

Corollary 6.3.2. Let S1(L̂ ) denote the Oh, -submodule of J1(L̂ ) generated
by (j1(�(Âh, , L̂ ))) ?Dh, . Then S1(L̂ ) = J1(L̂ ).

Proof. Let Jn denote the image of S1(L̂ ) in Jn(L̂ ), n = 0, 1, . . . . It su�ces to
show that Jn = Jn(L̂ ) for all n. For this we use induction on n. When n = 0,
this is equivalent to the statement that L̂ is generated by its global sections, i.e.,
that L̂ defines a polarization.
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Now suppose Jn�1 = Jn�1(L̂ ). It su�ces to show that the global sections of
Jn generate Symn!h, ⌦ L̂ at every point, under the map defined by (6.1.7). Let
�n(S) denote the image of �(Âh, , Jn) in �n(h, ), and let Hn(S) = Lift(�n(S)).
It follows from the Lemma and (6.1.9) that

(6.3.2.1) Hn(S) = {X 2 ⇥ A(d⇢ C(X)�h ⌦ �f ), X 2 Symn(u+
h ) | �f 2 Sg}.

Write  (X,�f ) = ⇥ A(d⇢ C(X)�h ⌦ �f ). To complete the induction, we must
show that, for every g 2 G(g, A), the homomorphism

(6.3.2.2)
Sg ! Symn(u+

h )? :

�f 7! (X 7!  (X,�f )(g)), X 2 Symn(u+
h )

is surjective. Suppose not. Then for some non-zero X 2 Symn(u+
h ), we have

 (X,�f )(g) = 0 for all �f . It follows that,

 (X,�f )(g · gf ) = 0 8�f 2 Sg, 8gf 2 G(g, ).

But  (X,�f ) is H(Q)-invariant; it follows by continuity that  (X,�f ) is identi-
cally zero for all �f 2 Sg, which is absurd. The lemma follows.

6.4. Let G = Sp(V,<, >) as in §1. Then G(A) acts naturally on G(g, A) and the
action extends by linearity to an action on G(g, C ·  ). As in §4, we may define
a continuous projective representation P(! A) of G(A) on S(Rg) ⌦ Ŝg which lifts
to a representation ! A of an extension G̃(A) of G(A) by C

⇥. The representation
! A satisfies

(6.4.1) ! A(�)⇢ A(�)! A(��1) = ⇢ A(��), � 2 G̃(A),� 2 G(g, A)

We similarly define the extension G̃(R) of G(R) by C

⇥ to be the pullback of the
extension G̃(A) to the subgroup G(R) of G(A). Then G̃(R) acts naturally on
S(Rg), and satisfies the analogue of (6.4.1).

The imbedding G(Q) ! G(A) lifts to an imbedding G(Q) ! G̃(A).
Let Kh ⇢ G(R) denote the centralizer of h(S), with h as in 6.0; let K̃h be the in-

verse image of Kh in G̃(R). Thus G̃(R)/K̃h ' S±; this defines a complex structure
on G̃(A)/K̃h, and the moduli space Mg

 is naturally isomorphic to G(Q)\G̃(A)/K̃h

[,].
Let g = Lie(G(R)). The adjoint representation of GSp(R) on Lie(GSp(R))

leaves g invariant. Thus Ad � h defines a Hodge structure on g, which is of type
(0, 0) + (�1, 1) + (1,�1) []. Let kh = g0,0, p� = g1,�1, p+ = g�1,1. Then kh =
Lie(Kh)C. We let g̃ = Lie(G̃(R)) = G�C, where C is the center of g̃ and [g̃, g̃] = g.
Let k̃h = kh � C ⇢ g� C.

The action of G(A) on G(g, C ·  ) pulls back to an action of G̃(A). Let D
(resp. DC) be the semidirect product of G̃(A) and G(g, A) (resp. G(g, C ·  ))
with respect to this action, and let B0 (resp. B0,C) denote the quotient of D (resp.
DC) by the subgroup (t, t) 2 Z(G)⇥Z(G̃(A)) = C

⇥⇥C

⇥. Then B0 acts naturally
on S(Rg)⌦ Ŝg; we denote this representation B0(!).
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Denote by d! C the natural action of U(gC) on S(Rg) or on S(Rg) ⌦ Ŝg. It is
known ([], ) that

(6.4.2) d! C(p�)�h = 0;

(6.4.3) There exists a character [ 12 ] : K̃h ! C

⇥ such that

! C(k)�h = [
1
2
](k)�h.

Let � = H(Q) o G(Q) ⇢ B0, HA = K̃h ⇢ B0, HA,C = Q�
o K̃h ⇢ B0,C; thus

Âg
 (C) is analytically isomorphic to �\B0/HA ' �\B0,C/HA,C [,].
We may apply the theory of 6.1 with G = B0, H = HA, � = �, q+ =

u+
h � p+, q� = u�h � p�, M = Âg

 (C). Extend the character ⇢(�1) of 6.2 to
⇢(�1)A : HA ! C

⇥:

⇢(�1)A |Z(G)= ⇢(�1), ⇢(�1)A(k) = [
1
2
](k)�1, k 2 K̃h.

Following the convention of (6.1.1), we let ⇥an
 be the bundle [⇢(�1)A]. So far ⇥an

 

is defined only as a C1 vector bundle. We define a holomorphic structure on ⇥an
 

by (6.1.3). That this determines a holomorphic structure on ⇥an
 is verified as in [,

p. 40].
It is clear as in [M3] that ⇥an

 is the analytic vector bundle associated to the
algebraic line bundle ⇥ (A) = ⇥(A) |Âg

 

, with ⇥(A) as in 5.4. Just as in 6.2,
there is a homomorphism

S : Sg ! �(Âg
 ,⇥ (A))

which intertwines the actions of B0(Af ) def= G(g, ) · G̃(Af ) ⇢ B0 on both sides.
When g > 1, S is an isomorphism by Proposition 2.9 (or by the direct limit version
of Proposition 3.11). We exclude the case g = 1 from the following discussion; it
will be treated in §7.

Let UA denote the enveloping algebra of Lie(G(g, C)) o GC. Let C(1) denote
C with the action ⇢(�1)? of HA,C. There is a B0(Af )-equivariant isomorphism of
analytic vector bundles (6.1.6):

(6.4.4) J1(⇥an
 ) ' �\B0 ⇥ (UA ⌦U(hA,C) C(1))?/HA

where hA,C = Lie(HA)C and the dual on the right hand side is taken as an inverse
limit.

Denote by d⌦ the representation of UA on S(Rg) which coincides with d⇢ C
(resp. with d! C) on Lie(G(g, C)) (resp. on U(gC)). The function �h defines a
map

UA ! S(Rg); D 7! d⌦ (D)�h

which factors through UA⌦U(HA,C)) C(1) ((6.2.5), (6.4.2), (6.4.3)). By duality, this
map defines a holomorphic subbundle

S1,an
 

def= �\B0 ⇥ Ŝ(Rg)/HA ⇢ J1(⇥an
 ).
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Here the action of K̃h on Ŝ(Rg) is the contragredient of !psiC

In the notation of 5.6, let D denote the algebra of di↵erential operators on Â g ,
and let E1(⇥ ) denote theOÂ

 

g

-subbundle of J1(⇥ ) generated by j1(�(Â g ,⇥ (A)))?
D. Let p : �\B0 ! Â g (C) be the projection. The fiber of E1(⇥ ) at the point
p(g) is canonically isomorphic (6.1.10) to the subspace of Hom(UA, C) given by

{D 2 d⌦ (X ·D)(�h ⌦ �f )(g), D 2 UA | X 2 UA,�f 2 Sg}.

It follows that E1(⇥ )an ⇢ S1,an
 . On the other hand, for any point x 2 Mg

 ,
let Âx be the fiber of Â g over x, and let E1x (resp. J1x ) denote the pullback of
E1(⇥ ) (resp. J1(⇥ )) to Âx. Then Corollary 6.3.2 states exactly that E1x = J1x .
By dimension considerations, it follows that E1(⇥ ) = S1,an

 .
Recall that in 5.6 we defined a bundle S1(⇥) over M̃g. Let S1(⇥ ) denote

the restriction of S1(⇥) to Mg
 . Let " : Mg

 ! Â g denote the zero section. The
above discussion may be summarized as follows:

Proposition 6.5. . There is a natural G̃(Af )-equivariant isomorphism

(S1(⇥ ))an ⇠�! " ⇤ (S1,an
 ) def= G(Q)\G̃(A)⇥ Ŝ(Rg)/K̃h

of analytic vector bundles. Here the action of K̃h on Ŝ(Rg) is the contragredient of
! C , and the holomorphic structure on S1,an

 is determined as in 6.1 by the action
of p� given by the contragredient of d! C .

6.5.1. Remark. The point of the above proposition is that it defines a rational
structure on the analytic vector bundle G(Q)\G̃(A)⇥ Ŝ(Rg)/K̃h. The above argu-
ment actually proves that the vector bundle S1,an

 has a natural rational structure;
this may be of some future use.

6.6. It remains to extend the above theory to G̃Sp. Note that the above theory
is only defined when  is the non-archimedean component of a global additive
character. However, for any  , we clearly have

(6.6.1) M̃g 'Mg
 ⇥G̃(A

f

) G̃Sp(Af ), S1(⇥) = S1(⇥ )⇥G̃(A
f

) G̃Sp(Af ),

where, if H ⇢ H 0 is an inclusion of groups and X is a space with right H-action,
then X ⇥H H 0 = X ⇥ H 0/H is the minimal extension of X to a space with H 0-
action. Combining (6.6.1) and Proposition 6.5, we obtain a G̃Sp(Af )-equivariant
isomorphism

(6.6.2) S1(⇥)an ' G(Q)\G̃(R)⇥ G̃Sp(Af )⇥ Ŝ(Rg)/K̃h

of analytic vector bundles.
Let � = G(Q)\[G̃(R) ⇥ G̃Sp(Af )]. It follows from (6.6.2) that we have an

isomorphism (cf. (6.1.2))
(6.6.3)
Lift : �1(M̃g,S1(⇥)) ⇠�! {f 2 C1(�, Ŝ(Rg)) | f(gk) = ! (k)�1f(g), g 2 �, k 2 K̃h}

We would like to realize sections of S1(⇥) as functions on G̃Sp(A), defined as in
§5 as the semi-direct product of G̃(A) with the torus T (A). This can be done in
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a number of ways, depending on the choice of a character of R

⇥
+, as follows: Let

GSp(R)+ = ⌫�1(R⇥+) ⇢ GSp(R), where ⌫ is the symplectic multiplier, as in §5.
Then GSp(R)+ ' G(R)⇥Z+, where Z+ is the identity component of ZGSp(R), and
is isomorphic to R

⇥
+. The covering group G̃Sp(R) admits a natural surjective map

to GSp(R). Let G̃+ ⇢ G̃Sp(R) denote the inverse image of GSp(R)+ under this
map; then

(6.6.4) G̃+ ' G̃(R)⇥ Z+ ' G̃(R)⇥ R

⇥
+.

Let f = Lift(s) be a function on � in the image of Lift, as in (6.6.3), and let
↵ be a character of R

⇥
+. The decomposition (6.6.4) defines an extension of f to a

function f↵ = Lift
↵
(s) on the subgroup �+ def= G(Q)\G̃+ ⇥ G̃Sp(Af ) ⇢ G̃Sp(A):

(6.6.5) f↵(g̃z, gf ) = ↵(z)f(g̃, gf ), z 2 Z+, g̃ 2 G̃(R), gf 2 G̃Sp(Af ).

Let GSp(Q)+ = GSp(Q) [ G̃+. We say s 2 �1(M̃g,S1(⇥)) is ↵-admissible if
Lift

↵
(s) satisfies

(6.6.6) Lift↵(s)(�g) = Lift
↵
(s)(g),8� 2 GSp(Q)+, g 2 �+.

We may identify

GSp(Q)+\G̃+ ⇥ G̃Sp(Af ) ' GSp(Q)\G̃Sp(A);

thus if s is ↵-admissible, then Lift
↵
(s) is naturally a function on GSp(Q)\G̃Sp(A),

which we denote Lift
GSp

(s). If s is ↵-admissible, then ↵ is uniquely determined;
thus there is no danger of ambiguity.

More generally, we say s is admissible if is a finite linear combination
P

si, where
each si is ↵i-admissible for some ↵i. We let

Lift
GSp

(s) =
X

Lift
GSp

(si) 2 C1(GSp(Q)\G̃Sp(A), Ŝ(Rg)).

The subspace �1(M̃g,S1(⇥))adm ⇢ �1(M̃g,S1(⇥)) of admissible sections is sta-
ble under the action of G̃Sp(Af ).

It is known [] that the representation ! = Ind
G̃Sp(A)

G̃(A)
! A is independent of the

character  A. It is thus clear from (6.6.1) that, for any  , the action of G̃Sp(Af )
on �1(M̃g,S1(⇥) is given by the restriction !f of ! to G̃Sp(Af ). Let !adm,R be
the representation of G̃Sp(R) on the linear space spanned by

{f 2 Ind
G̃Sp(R)

G̃(R)
! 1 | 9 ↵ such that f(g̃z) = ↵(z)f(g̃), z 2 Z+, g̃ 2 G̃(R)}.

Then !adm,R is independent, up to isomorphism, of the choice of  1. Let !adm

denote the subrepresentation !adm,R ⌦ !f of !. It follows from the preceding
discussion that the natural representation of G̃Sp(A) on �1(M̃g,S1(⇥)adm) is
given by !adm.
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7. Fourier Expansions

For each integer N � 1, let SN = Sg,N be the split torus over Q with character
group BN = Hom(Sym2(Zg), (1/N)Z); let B = B1. Then for each  , SN is
the torus corresponding by Mumford’s theory of toroidal compactification to the
standard point boundary component of Mg

N, . Specifically, the positive-definite
symmetric matrices form a cone C ⇢ B ⌦ R which is homogeneous with respect
to the natural action of GL(g, R). For each integer N � 1, let �`(N) ⇢ GL(N, Z)
be the principal congruence subgroup of level N . Ash et al. [AMRT] consider
�`(N)-invariant decompositions ⌃ of C into rational polyhedral cones

C =
[

�2⌃

�

satisfying certain axioms of finiteness and compatibility. To each such ⌃ corre-
sponds a locally finite equivariant torus imbedding SN ,! SN,⌃ which forms a local
model near part of the boundary of Mg

N, .
Similar considerations hold for all locally symmetric varieties. However, in the

case of Mg, the local parametrization of the boundary admits an algebraic interpre-
tation in terms of degenerating abelian varieties. This interpretation was developed
in characteristic zero by Brylinski [B] and over Z by Faltings and Chai [FC]. The
latter two authors make explicit use of the arithmetic theory of theta functions;
their results include in passing a treatment of the Fourier expansions of forms of
weight 1

2 . Let
S1 = lim �

N

SN

where the surjective morphism SN ! SM , M ÷ N , corresponds to the inclusion
BM ⇢ BN of character groups. Then S1 is a pro-algebraic torus with charac-
ter group B1 = Hom(Sym2(Zg), Q). Fix a GL(g, Z)-invariant rational polyhe-
dral decomposition ⌃ of C, satisfying the axioms of [AMRT]. Then, for each N ,
⌃is�`(N)-invariant; thus ⌃ defines a torus imbedding

S1 ,! S1,⌃ = lim �
N

SN,⌃

Let ŜN,⌃ denote the formal completion of SN,⌃ at DN
def= SN,⌃ � SN , let S0

N =
ŜN,⌃ � DN , and let S1 = lim �N S0

N . Mumford’s theory of degenerating abelian
varieties ([M4], reprinted in [FC]) provides a pair consisting of an abelian scheme
⇡ : A0 ! S0

1 and a line bundle L0 on A0 defining a principal polarization on A0.
The pair (A0,L0) has the following properties:

(7.1) ⇡⇤L0 is canonically isomorphic to OS0
1

(by construction; cf. remarks in [F],
pp. 354-355, where L0 is called N).

(7.2) For M÷N , let pN,M : S0
N ! S0

M be the natural projection. In view of (7.1),
any section ✓̂ 2 �(S0

N , (p0
N,1) ⇤ (⇡⇤L0)) can be written as a formal series,

convergent in the topology defined by the sheaf of ideals corresponding to
DN :

✓̂ =
X

�2B
N

a(�)�.

(Cf. [F], p. 326, [FC,**].
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(7.3) The subgroup p⇤N,1(A0)[N ] is canonically isomorphic to µg
N ⇥ (Z/NZ)g. In

particular, given an isomorphism  : Af/Ẑ

⇠�! µ1, we obtain a compatible
family of canonical level N structures

↵N, : (Z/NZ)2g ⇠�! p⇤N,1(A0)[N ].

(7.4) Let p1,1 : S0
1 ! S0

1 , ⇡1 : (p1,1)⇤A0 ! S0
1 be the canonical morphisms.

The triple ((p1,1)⇤A0, (p1,1)⇤L0, {↵N, }) defines a morphism

j : S0
1 !Mg

 .

Then

j⇤ (⇥ ) is canonically isomorphic to ⇡1,⇤(p1,1)⇤L0.

7.5. Let

F⇥ = {
X

�2B1

a(�)� | 9 N > 0 such that a(�) = 0 for � /2 C̄ \BN}

where C̄ is the closure of C in B ⇥ R. The above remarks allow us to define a
homomorphism

F : �(Mg
 ,⇥ ) ! F⇥,

except when g = 1, which we consider below. Remember that B1 consists of
symmetric bilinear forms on Q

g, thus each � is associated to a symmetric g ⇥ g
matrix M(�) with rational entries. If we view � as the function e2⇡iTr(M(�)Z) on
the Siegel upper half plane, then F becomes the usual Fourier expansion ([F], §9,
[FC]), and in particular is injective.

7.6. When g = 1, we can define, for any open subset U ⇢M1
 , a homomorphism

F 1(1) : �(U,⇥ ) ! F1
⇥, where

F1
⇥ = {

X

�2B1

a(�)� | 9 N > 0 such that a(�) = 0 for � /2 BN}.

The homomorphism F 1(1) is the Fourier expansion at the cusp 1; for any other
cusp c, there is a similar homomorphism F 1,c. Let

�̃(U,⇥ ) = {f 2 �(U,⇥ ) | F 1,c(f) 2 F1
⇥, for all cusps c}.

The variety M1
 has a natural G(Af )-equivariant compactification j : M1

 ! M̄1
 ,

obtained by adding points. Let ⇥̄ ⇢ j⇤⇥ be the subsheaf such that �(V, ⇥̄ ) =
�̃(V \M1

 ,⇥ ), for an open subset V ⇢ M̄1
 . The arguments of §4-§6 go through

also in the case g = 1, provided M1
 is replaced by M̂1

 and ⇥ by ⇥̄ . In the
future, these modifications for the case g = 1 will be assumed without further
mention.
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