MAIN THEOREM OF GALOIS THEORY

Theorem 1. [Main Theorem] Let L/K be a finite Galois extension.

(1) The group G = Gal(L/K) is a group of order [L : K].

(2) The maps

 $f : {subgroups of G} \rightarrow {subfields of L containing K}$

and

 $g: \{subfields of L containing K\} \rightarrow \{subgroups of G\}$

defined by

$$f(H) = L^H = \{x \in L \mid h(x) = x \; \forall h \in H\}$$

and

$$g(E) = G_E = \{g \in G \mid g(x) = x \; \forall x \in E\}$$

are mutually inverse bijections.

(3) If $L \supset E \supset K$ then $[L : E] = |G_E|$ and $[E : K] = [G : G_E]$.

(4) Moreover, E/K is a normal extension if and only if G_E is a normal subgroup of G. In that case, every element of G preserves the subfield E, and the restriction map

 $r: G \to Gal(E/K); \ r(g)(x) = g(x) \ \forall x \in E$

defines an isomorphism

$$G/G_E \xrightarrow{\sim} Gal(E/K).$$

Theorem ?? corresponds to Theorem 84 of Rotman's book.

OUTLINE OF THE PROOF

The theorem is proved in a series of propositions.

Proposition 2. Let L/K be an extension of degree d, U/K any extension, $\Sigma = \{\sigma : L \to U \mid \sigma(x) = x \ \forall x \in K\}$. Then $|\Sigma| \le d$.

Corollary 3. Under the hypotheses of Proposition **??**, suppose U is a finite Galois extension. Suppose moreover that, for any $x \in L$, the minimal polynomial of x in K[X] has a root in U. Then $|\Sigma| = d$.

This corresponds roughly to Theorem 51 of Rotman's book.

Proposition 4. Let L be any field, $G \subset Aut(L)$ a finite group of automorphisms with d elements. Let $K = L^G = \{x \in L \mid g(x) = x \forall g \in G\}$. Then L/K is a Galois extension and [L:K] = d.

This corresponds to Theorem 79 of Rotman's book.

First we show how these three steps imply Theorem **??**, then we sketch the main steps in the proofs of the propositions.

- To prove (1) of Theorem ??, we take L = U in Corollary ??. Then Σ is the group Gal(L/K).
- We check first that L^G = K in (2) of Theorem ??. Say K₀ = L^G. It follows from the definitions that L ⊃ K₀ ⊃ K. But [L : K₀] = |G| by Proposition ??, and [L : K] = |G| by Theorem ?? (1). It follows from the degree formula

$$L \supset E \supset K \Rightarrow [L:K] = [L:E][E:K]$$

(applied to $E = K_0$) that $K_0 = K$.

More generally, if $L \supset E \supset K$, L/E is Galois. Any element of Aut(L) that fixes E necessarily fixes K, so $G_E = Gal(L/E)$. It then follows from the above argument that the fixed field L^{G_E} is E. This shows that $f \circ g$ is the identity in (2). Combining this with (1), we obtain (3).

- We need to show that $g \circ f$ is the identity; that is, that if $H \subset G$, then $H = G_{L^H}$. In any case we have $H \subset H_0$. Let $E = L^H$, E_0 the fixed field of $H_0 = G_{L^H}$. It follows from the definitions that (tautologically) $E \subset E_0$. But $H_0 = G_{E_0}$ by Proposition ??, and therefore $H_0 \subset H$. Thus $H = H_0$.
- Let *E* be the set of subfields of *L* containing *K*. The group *G* acts on *E*: if σ ∈ G, E ∈ *E*, then

$$\sigma(E) = \{ \sigma(x), \mid x \in E \}.$$

Say $E \in \mathcal{E}$ is *stable* for G if, for all $\sigma \in G$, $\sigma(E) = E$. If E is stable then the restriction map defines a map from G to Gal(E/K), as in (4); however, we have not yet shown that E is Galois over K. Let $E \in \mathcal{E}$. Let $H = G_E$. We have for any $\sigma \in G$ that

 $G_E = \{g \in G \mid g(x) = x \,\forall x \in E\} = \{g \in G \mid \sigma(g)\sigma^{-1}\sigma(x) = \sigma(x) \,\forall x \in E\}.$

It follows that

$$\sigma H \sigma^{-1} = G_{\sigma(E)}.$$

In particular, E is stable for E if and only if $G_{\sigma(E)} = G_E$ if and only if H is a normal subgroup. This completes part of (4).

• Finally, it remains to be shown that E/K is normal if and only if H is normal. Suppose E is normal, say E is the splitting field of some

2

(5)

 $Q \in K[X]$, with roots x_1, \ldots, x_r , $E = K(x_1, \ldots, x_r)$. Then any $\sigma \in G$ permutes the roots of Q, hence leaves E stable.

If now $E \in \mathcal{E}$ is stable for G, say $E = K(x_1, \ldots, x_r)$. Say P_i is the minimal polynomial of x_i , $Q = \prod_i P_i$. Let $E' \supset E$ be the splitting field of Q in L. By the first part of this proof, E' is stable, hence Gal(L/E') is the kernel of the restriction map $G \rightarrow Gal(E'/K)$. But

$$|Gal(E'/K)| = [E':K] = \frac{[L:K]}{[L:E']} = |G|/|Gal(L/E')|$$

and by counting we see that the restriction map is surjective. It follows that E is invariant under all of Gal(E'/K). which permutes the roots of Q.

On the other hand, we have seen that Gal(E'/K) acts transitively on the roots of any irreducible polynomial that splits over E'. Since each P_i has at least one root in E, and since Gal(E'/K) stabilizes E and acts transitively on the roots of P_i , it follows that all the roots of each P_i are contained in E. Thus E' = E.

PROOFS OF PROPOSITION ?? AND COROLLARY ?? (SKETCH)

First assume L = K(y) for a single element y, and let $P \in K[X]$ be the minimal monic polynomial of y over K. Thus there is a unique isomorphism $K[X]/(P) \xrightarrow{\sim} L$ taking X to y, and $\deg(P) = d$. Then the set Σ is in bijection with homomorphisms $h : K[X] \to U$ such that h(P) = 0, in other words such that h(X) is a root of P. In other words, Σ is in bijection with roots of P in U; since $\deg(P) = d$, there are at most d such roots. Moreover, if U is a Galois extension of K, then it is normal and separable, and then there are exactly d roots of P.

Now by induction on d, we may assume L = E(y) where $L \supseteq E \supset K$ and Proposition ?? and Corollary ?? are known with L replaced by E. For each $\tau : E \to U$ extending the inclusion of K in U, we let $\Sigma_{\tau} = \{\sigma \in$ $\Sigma \mid \sigma(x) = \tau(x) \forall x \in E\}$. Let T be the set of such τ . Then $\Sigma = \prod_{\tau \in T} \Sigma_{\tau}$ (disjoint union), so $|\Sigma| = \sum_{\tau} |\Sigma_{\tau}|$. Each Σ_{τ} has cardinality at most $d_E =$ [L : E] by the first part of the proof, with equality if U is a Galois extension of K, since it is then also a Galois extension of E. Moreover, the set T of τ has cardinality at most [E : K] by induction, with equality if U is a Galois extension. Thus in general

$$|\Sigma| = \sum_{\tau \in T} |\Sigma_{\tau}| \le \sum_{\tau} d_E = [L:E]|T| \le [L:E][E:K] = [L:K].$$

This completes the proof of Proposition ??. Moreover, if U is a Galois extension of K then all the inequalities are equalities; this completes the proof of Corollary ??.

PROOF OF PROPOSITION ?? (SKETCH)

The proof has three parts.

(a) First we prove that L/K is a Galois extension. Let $x \in L$, $P \in K[X]$ its minimal polynomial. We need to show that P is split and separable in L[X]. For this it suffices to show that P divides a split separable polynomial in L[X].

Let $\{x_1, \ldots, x_n\}$ be the *G* orbit of *x*, i.e. the set of elements of the form g(x) with $g \in G$; say $x = x_1$. The x_i are all distinct though it is possible that $g_1(x) = g_2(x)$ for different g_i . Write $Q = \prod_{i=1}^n (X - x_i) \in L[X]$. Because the elements of *g* permute the x_i , g(Q) = Q for all $g \in G$. This implies that the coefficients of *Q* as a polynomial are all fixed by *G*, hence belong to $L^G = K$. Thus $Q \in K[X]$. On the other hand, $Q(x) = Q(x_1) = 0$, thus *Q* is divisible by the minimal polynomial *P* of *x*. Since the roots of *Q* are distinct, this implies that *P* is separable; since *Q* is split in L[X], this implies that *L* is also split in L[X].

(b) We prove that $[L : K] = m \ge n = |G|$. (This is not necessarily the same n as in (a).) Let x_1, \ldots, x_m be a basis for L/K. For each $g \in G$, let $v(g) = (g(x_1), \ldots, g(x_m)) \in L^m$ (think of this as a column vector. By Dedekind's lemma on linear independence of embeddings, the set $\{v(g), g \in G\}$ are linearly independent; if not, there would be a linear relation $\sum a_g g(x_i) = 0$ for $i = 1, \ldots, m$, hence $\sum a_g g(x) = 0$ for all $x \in L$, which contradicts Dedekind's lemma. It follows that $m \ge n$.

(c) We prove that $m \leq n$. If not, say x_1, \ldots, x_{n+1} are linearly independent elements of L. Write $w(g) = (g(x_1), \ldots, g(x_{n+1})) \in L^{n+1}$ and consider the $n \times n + 1$ matrix with rows w(g). The columns are linearly dependent over L, thus there exist $y_i, i = 1, \ldots, n+1$ with

$$\sum_{i=1}^{n+1} y_i g(x_i) = 0, \ \forall g \in G.$$

Say r is minimal so that y_1, \ldots, y_r are all different from 0, $y_i = 0$ for i > r. Now let $\gamma, h \in G$:

$$0 = \gamma(\sum_{i=1}^{r} y_i h(x_i)) = \sum_{i=1}^{r} \gamma(y_i) \gamma \cdot h(x_i) = \sum_{i=1}^{r} \gamma(y_i) g(x_i)$$

where $g = \gamma h \in G$ is arbitrary.

Thus for all $\gamma \in G$, the $\gamma(y_i)$ define a relation among the $g(x_i)$. Since r was chosen minimal, these relations are all proportional to each other, hence to the relation with $\gamma = 1$. There are thus elements $\alpha_{\gamma} \in L^{\times}$ such that

$$\sum_{i=1}^r \gamma(y_i)g(x_i) = \alpha_{\gamma}(\sum_{i=1}^r y_ig(x_i))$$

Comparing coefficients, we find

$$\frac{\gamma(y_i)}{y_i} = \alpha_{\gamma}, i = 1, \dots, r.$$

This in turn implies that $\gamma(\frac{y_i}{y_1}) = \frac{y_i}{y_1}$ for all i and all γ . Thus

$$z_i = \frac{y_i}{y_1} \in K.$$

Now return to the relation $\sum_i x_i y_i = 0$ (with g = 1); divide through by y_1 to get

$$\sum_{i} z_i x_i = 0.$$

This is a linear relation over K, thus the x_i are not linearly independent, which is a contradiction.