MAIN THEOREM OF GALOIS THEORY

Theorem 1. [Main Theorem] Let L/ K be a finite Galois extension.
(1) The group G = Gal(L/K) is a group of order |L : K].
(2) The maps
f : {subgroups of G} — {subfields of L containing K}
and
g : {subfields of L containing K} — {subgroups of G}
defined by
f(H)y=L" ={z € L|h(x)=2Vh <€ H}
and
9(E) =Gp={9€G|yg(zx) =zVu e E}
are mutually inverse bijections.

(3)IfLDFE D Kthen[L: E|=|Ggland [E : K] =[G : Gg|.

(4) Moreover, E/K is a normal extension if and only if Gg is a normal
subgroup of G. In that case, every element of G preserves the subfield E,
and the restriction map

r:G— Gal(E/K); r(9)(z) =g(x) Ve € E
defines an isomorphism
G/Grp —Gal(E/K).

Theorem ?? corresponds to Theorem 84 of Rotman’s book.

OUTLINE OF THE PROOF
The theorem is proved in a series of propositions.

Proposition 2. Let L/ K be an extension of degree d, U/ K any extension,
Y={o:L—U|o(x)=xVre K} Then |X| <d.

Corollary 3. Under the hypotheses of Proposition ??, suppose U is a finite
Galois extension. Suppose moreover that, for any x € L, the minimal
polynomial of x in K[X] has a root in U. Then |X| = d.

This corresponds roughly to Theorem 51 of Rotman’s book.
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Proposition 4. Let L be any field, G C Aut(L) a finite group of automor-
phisms with d elements. Let K = L = {z € L | g(x) = x Vg € G}. Then
L/K is a Galois extension and [L : K| = d.

This corresponds to Theorem 79 of Rotman’s book.
First we show how these three steps imply Theorem ??, then we sketch
the main steps in the proofs of the propositions.

e To prove (1) of Theorem ??, we take L = U in Corollary ??. Then
Y is the group Gal(L/K).

e We check first that LY = K in (2) of Theorem ??. Say K, = LY. It
follows from the definitions that L D K, D K. But [L : K] = |G|
by Proposition ??, and [L : K] = |G| by Theorem ?? (1). It follows
from the degree formula

(5) L>E>K=[L:K|=|L:E|E:K]

(applied to £ = Kj) that K = K.

More generally, if L D E D K, L/F is Galois. Any element of
Aut(L) that fixes E necessarily fixes K, so Gg = Gal(L/E). Tt
then follows from the above argument that the fixed field L% is E.
This shows that f o g is the identity in (2). Combining this with (1),
we obtain (3).

e We need to show that g o f is the identity; that is, that if H C G,
then H = G u. In any case we have H C H,. Let E = L, E,
the fixed field of Hy = G u. It follows from the definitions that
(tautologically) £ C Ej,. But Hy = G, by Proposition ??, and
therefore Hy C H. Thus H = H,.

e Let & be the set of subfields of L containing K. The group G acts
oné&:ifo e G, E e &, then

o(E)={o(z), |z € E}.

Say E € & is stable for G if, forall 0 € G, o(E) = E. If E'is

stable then the restriction map defines a map from G to Gal(E/K),

as in (4); however, we have not yet shown that £ is Galois over K.
Let £ € £. Let H = Gg. We have for any o € G that

Gp={9€Glglx)=aVr e E} ={g€G|o(g)o 'o(x) =0o(x)Vr € E}.
It follows that
cHo™ ! = Go(E)-
In particular, £ is stable for £ if and only if G,r) = G if and
only if H is a normal subgroup. This completes part of (4).

e Finally, it remains to be shown that £/ K is normal if and only if H
is normal. Suppose ' is normal, say £ is the splitting field of some
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Q) € K[X], with roots z1,...,z,, E = K(xy,...,z,). Then any
o € G permutes the roots of (), hence leaves E stable.

If now E € & is stable for G, say F = K(z1,...,x,). Say P, is
the minimal polynomial of z;, Q = [[, . Let E” D E be the split-
ting field of @ in L. By the first part of this proof, £’ is stable, hence
Gal(L/E'") is the kernel of the restriction map G — Gal(E'/K).
But

[L: K]
[L: E']

|Gal(E'/K)| = [E: K] = = |G|/|Gal(L/E")]

and by counting we see that the restriction map is surjective. It
follows that F is invariant under all of Gal(E'/K). which permutes
the roots of ().

On the other hand, we have seen that Gal(E’/ K) acts transitively
on the roots of any irreducible polynomial that splits over £’. Since
each P, has at least one root in £, and since Gal(E'/K) stabilizes
E' and acts transitively on the roots of F;, it follows that all the roots
of each P, are contained in E. Thus £’ = FE.

PROOFS OF PROPOSITION ?? AND COROLLARY ?? (SKETCH)

First assume L = K (y) for a single element y, and let P € K[X] be
the minimal monic polynomial of y over K. Thus there is a unique isomor-
phism K[X]/(P) —L taking X to y, and deg(P) = d. Then the set ¥ is
in bijection with homomorphisms s : K[X]| — U such that h(P) = 0, in
other words such that (X)) is a root of P. In other words, X is in bijection
with roots of P in U; since deg(P) = d, there are at most d such roots.
Moreover, if U is a Galois extension of /, then it is normal and separable,
and then there are exactly d roots of P.

Now by induction on d, we may assume L = F(y) where L 2 F D K
and Proposition ?? and Corollary ?? are known with L replaced by E. For
each 7 : ' — U extending the inclusion of K in U, we let 3, = {0 €
Y|o(x) =7(x) Vo € E}. Let T be the set of such 7. Then ¥ = [[ ., %,
(disjoint union), so |X| = > _|X,|. Each X, has cardinality at most dp =
[L : E] by the first part of the proof, with equality if U is a Galois extension
of K, since it is then also a Galois extension of F/. Moreover, the set 7" of 7
has cardinality at most [E : K] by induction, with equality if U is a Galois
extension. Thus in general

8= 1% < do = [L: BT < [L: E|[E: K] = [L: K).

T€T T
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This completes the proof of Proposition ??. Moreover, if U is a Galois
extension of K then all the inequalities are equalities; this completes the
proof of Corollary 2?.

PROOF OF PROPOSITION ?? (SKETCH)

The proof has three parts.

(a) First we prove that L/ K is a Galois extension. Letz € L, P € K[X]
its minimal polynomial. We need to show that P is split and separable in
L[X]. For this it suffices to show that P divides a split separable polynomial
in L[ X].

Let {z1,...,x,} be the G orbit of z, i.e. the set of elements of the form
g(x) with g € G; say © = x;. The z; are all distinct though it is possible that
g1(x) = go(z) for different g;. Write Q = [[_, (X — z;) € L[X]. Because
the elements of g permute the z;, g(Q) = @ for all ¢ € G. This implies
that the coefficients of () as a polynomial are all fixed by G, hence belong
to LY = K. Thus Q € K[X]. On the other hand, Q(z) = Q(z;) = 0,
thus () is divisible by the minimal polynomial P of x. Since the roots of ()
are distinct, this implies that P is separable; since @ is split in L[X], this
implies that L is also split in L[X].

(b) We prove that [L : K] = m > n = |G|. (This is not necessar-
ily the same n as in (a).) Let z1,...,z,, be a basis for L/ K. For each
g € G,letv(g) = (g(x1),...,9(xy)) € L™ (think of this as a column vec-
tor. By Dedekind’s lemma on linear independence of embeddings, the set
{v(g), g € G} are linearly independent; if not, there would be a linear rela-
tion ) ayg(x;) = 0fori =1,...,m, hence ) a,g(x) = 0 forall z € L,
which contradicts Dedekind’s lemma. It follows that m > n.

(c) We prove that m < n. If not, say xy,...,2,4+1 are linearly inde-
pendent elements of L. Write w(g) = (g(x1),...,9(xns1)) € L™ and
consider the n x n + 1 matrix with rows w(g). The columns are linearly
dependent over L, thus there exist y;,72 = 1,...,n + 1 with

n+1

> yig(zi) =0, Vg€ G
=1

Say r is minimal so that v, . . . , y, are all different from 0, y; = 0 for i > r.
Now let v, h € G:

0= V(Z yih(z;)) = Z V(i) - hlx;) = Zv(yi)g(fvz-)

where g = vh € G is arbitrary.
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Thus for all v € G, the y(y;) define a relation among the g(x;). Since
r was chosen minimal, these relations are all proportional to each other,
hence to the relation with v = 1. There are thus elements ., € L* such
that

Z Y(yi)g(w:) = Oéw(z Yig(;))

Comparing coefficients, we find

MZO@JZI,...,T.
Yi
This in turn implies that 7(5—1) = .= for all 7 and all . Thus
Y

Now return to the relation ), z;y; = 0 (with g = 1); divide through by

11 to get
Z zix; = 0.
7
This is a linear relation over K, thus the z; are not linearly independent,
which is a contradiction.



