

Let
$$\Gamma = \Gamma(B, C) : \left\{ \alpha : \begin{pmatrix} \alpha & b \\ c & d \end{pmatrix} \in \operatorname{GL}_{2}^{*}(F) \middle|_{b \in B^{2}, c \in B C} \right\}^{\alpha, d \in O_{F}^{*}, ad b \in EQ_{F}^{*}}$$

We charater of $(O_{F}/C)^{\alpha}$
Define Hilbert modular time on Γ of with and
charater to be
 $f : \mathcal{H}^{d} \rightarrow C$ holomorphic
s.t. $\operatorname{fl}_{K}^{\alpha} = \operatorname{Yo}(\alpha) f$ for every $\alpha \in \Gamma$
where $\operatorname{fl}_{K}^{\alpha}(E) = (\operatorname{det} \alpha)^{W_{2}} (CE + d)^{-W} \operatorname{fl}(\alpha(E))$
 $(\operatorname{det} \alpha)^{W_{2}} = (T \operatorname{det}(\alpha_{1}))^{W_{2}}$
 $(LE + d)^{\#} = T(C_{1}E_{1} + d_{1})^{\#}$
 $Y_{0}(\alpha) = \operatorname{Yo}(\alpha)$ and C
 $(\operatorname{if} F = G \operatorname{also}$ require f holomorphic C_{1}^{α} α_{2}
 $(f \in G^{1})$ for f of M_{2}^{α} (f, Y_{2}) .

Let S difference of
$$F/Q$$

h strict class number of F
 $t_1, ..., t_n$ representatives for strict releal classes
of F , chosen s.1. $N t_A$ prime to $N(np)$
Then let $M_w(n, v_0) = \frac{h}{1-1} M_w(\Gamma(t_A s, n), v_0)$
and $M_w(n) = \bigoplus M_w(n, v_0)$
 V_0
 V_0 : character of $(O_F/n)^{T}$.

1.2
Adelic point of view.
Fix
$$n$$
 integral ideal of O_F
For p prime ideal of O_F
let $Y_p = \frac{2}{(a^b)} e GL2(F_p) \left[aO_{F,P} + n_p = O_{F,P} \right]$
 $b \in S_p^{-1}$
 $c \in n_p S_p$
 $d \in O_{F,P}$

 $Q = Res_{F/Q} GL_2 - QA = GL_2(R_F) - QG = GL_2(F)$

$$G_{\infty,+} = GL_z^+(R)^d$$

$$\Upsilon = Q_{\beta} \cap (Q_{\omega, +} \times \prod_{p} \gamma_{p})$$

$$W = G_{W,+} \times \pi_{P} W_{P}$$

$$\alpha \in G_{0}, w \in W$$

$$= \Psi_{T}(w^{\nu}) (f_{\lambda}||_{k} w_{v} \supset (i, i, ..., i)$$

$$= \Psi_{T}(w^{\nu}) (f_{\lambda}||_{k} w_{v} \supset (i, i, ..., i)$$

$$= \Psi_{T}(v^{\nu}) = \Psi_{T}(v^{\nu}) = \Psi_{T}(v^{\nu}) = \Phi(u, v \in W \quad w \in W \quad v \in -1)$$

$$= \Psi_{T}(v^{\nu}) = \Psi_{T}(v^{\nu}) = \Phi(u, v \in W \quad w \in W \quad v \in -1)$$

$$= \Psi_{T}(v^{\nu}) = \Psi_{T}(v^{\nu}) = \Phi(u, v \in W \quad w \in W \quad v \in -1)$$

$$= \Psi_{T}(v^{\nu}) = \Psi_{T}(v^{\nu}) = \Psi_{T}(v, v) = -1$$

$$= \Psi_{T}(v, v) = \Psi_{T}(v, v) = \Psi_{T}(v, v) = -1$$

$$= \Psi_{T}(v, v) = -1$$

$$f|_{T,\alpha T,\mu} = \sum_{j} \mathcal{V}_{T}(x_{\lambda}^{T} \alpha_{j} x_{\mu})^{T} f||_{\alpha_{j}}$$

$$\cdot \quad y \in \mathcal{W}, \quad \text{for each } \lambda, \quad we \; \text{can find}$$

$$\alpha_{\lambda} \in x_{\lambda} T \times \mu^{T} \cap G_{1}\alpha_{j} \text{ s.t. (for a unique}$$

$$\mathcal{W}_{y} \mathcal{W} = \mathcal{W} \; x_{\lambda}^{T} \alpha_{\lambda} x_{\mu} \; \mathcal{W}$$

$$determined \; \mu)$$

$$\mathcal{W}_{y} \mathcal{W} = \mathcal{W} \; x_{\lambda}^{T} \alpha_{\lambda} x_{\mu} \; \mathcal{W}$$

$$determined \; \mu)$$

$$\mathcal{U}_{y} \mathcal{W} = \{g_{1}, \dots, g_{n}\}$$

$$g_{\mu} = f_{\lambda} \mid T_{\lambda} \alpha_{\lambda} T \mu,$$

$$\mathcal{M} \; \text{integral pilled of } F$$

$$T(m) = \sum_{j} \mathcal{W}_{j} \mathcal{W} \; , \; y \in Y \; \text{ s.t. } m = \alpha \cdot O_{F}$$

$$i \mathcal{T} \; m \; \text{ prime to } n$$

= 0 if m not prime to n
R(W,T) generated by T(P), 5(P) Our all p prime
ideal 13 a commutative alg.
and $T(m)T(n) = \sum_{m \in n \subset a} N(a) S(a) T(a^{-2}mn)$
Formies expansion.
for $f_{\lambda} \in M_{k}(\Gamma(t_{\lambda}\delta, n), \psi_{0})$ it is inv under $(1, (t_{\lambda}\delta)^{T})$
nerve can be represented by a Fourier expansion

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(\mu) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(\mu) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(\mu) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(\mu) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(0) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(1) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(1) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(1) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(1) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(1) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

$$f_{\lambda} = Q_{\lambda}(1) + \sum_{\mu \in L_{\lambda}} Q_{\lambda}(1) e^{2\pi i t \cdot (\mu E)}$$

Fix QCQ, QCQ.
For A contained in Gp or C
$M_{k}(n, A) = M_{k}(n, \mathbb{Z}) \otimes A$
13 the same as femk(n, C)
sit $c(a, f), c_{\lambda}(a, f) \in A$.
More generally if A B a field containing
Q or G_p , let $M_k(n, A) = M_k(n, Z) \otimes A$ and
for subring R of A containing Z or Zp.
$M_{F}(n, R) = \{f \in M_{F}(n, A)\} ((a, f), (a, c), f) \in R\}$
These is a theory of Hecke operators on Mr. (n) given by
¿Tria>. Sria>? a integral wood

§2.
P prime, O frimite extension of Zp in Ep

$$\Lambda = 0$$
 ET]
 Ω_{00} cyclotomic Zp extension of Q
Let $P^{e} = C f \cap Q_{00} : Q$]
 $IO p odd, let $\Im = P$
 $P = 2$ $\Im = 9$
 $U = (1+\Im)^{e}$
for each $K \in \mathbb{Z}$, $\Im \in \mathcal{M}_{P}$ to
 $Clefine V_{K, \Im} : \Lambda \longrightarrow O(\Im)$
 $V_{K,\Im} (1+T) = \Im u^{K-2}$$

Let
$$\Re = \{(k, z) | k = 2, z\}^{k} = 1$$
 for some reading
Define A A-adic modular form \Re aver F of levels
 n is a set of elements of A given by
 $\{ C(\alpha, 7) \ \alpha \text{ mitograd} (deal of O_{F}) \}$
 $\{ C_{n}(a, 7) \ \alpha \text{ mitograd} (deal of O_{F}) \}$
 $\{ C_{n}(a, 7) \ \alpha \text{ mitograd} (deal of O_{F}) \}$
with the property that four all but firstely many
 $V = V_{k,2}$ with $(k,3) \in \Re$, there causes
 $f_{v} \in M_{k}(nP' - O[3])$ with
Dimenter serves $p(s, f_{v}) = \sum v(c(\alpha, 7s)) Na^{-5}$
and constant terms of J_{v} are given by
 $C_{n}(a, f_{v}) = v(C_{n}(a, 7s)).$
such fv is onled a special zerich

For
$$\Lambda$$
- odic (pm) 7
let $Ag = \{(k,3) | k \ge 2, 3^{d} = 1, r \ge 0,$
 $f_{v} \in M_{k}(np^{r}) \quad v = V_{k,3}\}$
if $0^{m} each (k,3) \in Ag$
 $(Na)^{k-2} \leq (a) \quad v(q) \ge v(\Lambda_{a}) \quad v(q)$
 $f_{v} \quad sume \quad \Lambda_{a} \in \Lambda$
then define $\leq (a)^{k} q = \Lambda_{a} q.$
if assume for each a , $\Lambda_{a} = exists$ then
 $\exists \Lambda$ - adic form $g \quad st. \quad vg = T(a) \quad vq$
for each $v = v_{k,3}$, $(k,3) \in Aq$

Explicitly	We can define S(a), T(a) action on a M-adic form compatible with specializations
	$((m,T(n)g) = \sum \lambda_n \cdot Na \cdot C(a^{-2}mn, 7)$
	m+NCQ
	$C_{\lambda}(0, T(a)7) = Z \Lambda_{6} N_{6} C_{\Lambda_{0}}(0, 7)$
	Bla
where	$[b] = [t_p] = [a] = [t_u].$
	(0) \mathcal{F} $\lambda $
Suppose	
Suppose	now the correspondence a - La comes
grom a	character χ : $\lim_{n \to \infty} I_{np} \longrightarrow \Lambda = 0 \ \text{\widehat{U} T$}$
where	Ip denote the Strict ray class group of
F mod	f s.t. $\chi(Q) = \Lambda_Q$ for all Q prime
to np.	(S(R)=0 if a nut prime to mp')
We then	say 7 has charater X and closere

the
$$\Lambda$$
-module $M_{\Lambda}(m, \chi) = \begin{cases} F \notin lowel n \end{cases}$
has only χ
 Ul
 $S(n, \chi) = \begin{cases} F \notin M(n, \chi) \\ f = always \ alsep \end{cases}$
next ordinary projector.
Write $O_{F} = Tn_{F}(F)$
and let $e = Un \ U_{F}^{F!}$ adding on $M_{\chi}(nF, O)$
 $F \ge I - K \ge I$
with topology $lif(l) = \sup_{R, \chi} \{l(C(a, f) \mid b_{F}, l(C_{\chi}(o, f)))_{F}\}$
Qam: e is defined.
Let g_{2} maximal ideal of O , $F = O(g_{2})$.
 $\chi = M_{\mu}(nF, O)/g_{2} M_{\mu}(nF', O)$ $F = V.s.$

$$U_{p} \text{ acts on } X \text{ can be } \frac{5+1}{50 \text{ missimple}, \text{ milpotent}}$$

$$= P^{A} \text{ large enough}, \quad U_{p}^{CA} \text{ semismple}$$

$$= 7 = \beta_{P}, \quad U_{p}^{B} \text{ idempotent on } X.$$

$$= 7 \quad U_{p}^{R^{0}}\beta_{P} \text{ idempotent of } M_{e}/\beta_{P}^{0}M_{e}. \qquad (4)$$

$$e^{2} = e.$$

$$Pop. \quad e \quad extends \quad naturally \quad to \quad \mathcal{M}(n, \chi) \quad compatible$$

$$urth \quad specialization \quad and \quad e^{2} = e.$$

$$Po- \quad g \in \mathcal{M}, \quad Ag = \bigcup_{i=1}^{N}A_{i}, \quad Ai \in A_{i+1} \quad \emptyset_{MCD} \quad s.t.$$

$$(\mu, 5) \in A_{i} = 7 \quad (\mu, 3^{d}) \in A_{i}, \quad 5 \in \text{qal}(\overline{\mathfrak{Gp}}/\mu), \quad \mu: frac 0$$

$$u(A_{i}) \subset \mathcal{M}g \subset \mathcal{M}$$

$$M_{q}/M(A_{i}) \qquad \Rightarrow \qquad \bigoplus_{j \in \mathcal{M}} M_{e}(np^{j} - Dist)$$

=)
$$eq = q_1$$
 and $M(A_1)$
comparible and take limit $\hat{q} \in M$. If
Withe $M^\circ = eM$, $M_R^\circ = eM_R$.
For ideal $R = 0$ O_F , let F_R we the strict
iay dass field of conductor $R \cdot \infty$
By CFT , define group C_F s.t. via Artin map
 $Gral(F_n(3_F)/F) \simeq Imp^r/C_r$.
Peq: X is called cyclotomic if $U = V_{2r}3$,
3 of order exactly p'
(i) X_v has order $\geq Cp'$ C>0 independent of v

Then.
$$\chi$$
 cyclotomic \Rightarrow $\mathcal{M}^{\circ}(n, \chi)$ 0.9 . $n - mod$.
lemma. Fir n , $dm S_{\mu}^{\circ}(np, \kappa)$ is independent of μ .
 $\mu = frac 0$.
lemma. \Rightarrow Thm.
 $p_{ick} = \mathfrak{F}_{1}, \dots, \mathfrak{F}_{k} \in \mathcal{M}^{\circ}$ independent over Λ .
Let $N = \langle \mathfrak{F}_{1}, \dots, \mathfrak{F}_{k} \in \mathcal{M}^{\circ}$ independent over Λ .
Let $N = \langle \mathfrak{F}_{1}, \dots, \mathfrak{F}_{k} \rangle \sim n^{2} \subset \mathcal{M}^{\circ}$ (\mathcal{M} torsion-
 $free over \Lambda$)
Consider $N/(1+T-u^{\mu-2})N \rightarrow N_{\mu}^{\circ}(np, 0)$
 $\mathfrak{F}_{1} \longrightarrow \mathfrak{I}(u^{\mu+2}-1)$
For $\mu \gg 0$ it B ing. and $O = rank eff$ the
RHS is bounded by lemma and trivial bound
on E3.

11,

§3. Extend classical Esonsten series to
$$\Lambda$$
-adic.
for χ strict ideal class char. of conductor π
let $O_{\chi} = Z_{p}(\chi)$.
Pegme $\tilde{\chi}$: $\lim_{np'} I_{np'} \longrightarrow O_{\chi}(1)$
 $\alpha \longrightarrow \chi(\alpha)(1+T)^{\alpha}$
if α prome to mp
where $N\alpha = u^{\alpha}\delta$, $\delta \in M_{p+1}$, $\alpha \in Z_{p}$.
Then $\tilde{\chi}$ is cyclotomic.
Classical Eisenstein series.
Fix integer $K \gg 1$
For α strict ray class character Σ of conductor
 f and party $(-1)^{\alpha}$ at each $\alpha - prome$

there is a modular from
$$E_{\mu, \xi} \in M_{\mu}(f, \xi)$$

whose proceeded series is given by
 $S_{F}(S) \downarrow_{f} (S+1-\mu, \xi)$
and constant terms are
 $(\lambda(0, E_{\mu, \xi}) = 2^{-d} \downarrow (1-\mu, \xi).$
Prop. For each even strict ray class chorater χ
of conductor n , $\exists \xi_{\chi} \in M(mp, \tilde{\chi}) \otimes F_{\Lambda}$
 $(F_{\Lambda} = Frac \Lambda, \Lambda = Z_{P}(\chi) (T \xi).$
 $s.t. \xi_{\chi} (Su^{\mu, \nu} - 1) = E_{\mu, \chi p \cdot u^{2-\mu}}$
for all $\mu \geq 1$, $3 \in M_{p}\omega$.
where $p = p_{3} : \alpha \rightarrow 3^{\alpha}$ and ω Terchmuter

Char.	T	Conductor	(Z		w(R)=	Na ma	d g.	
PG ·	define	٤x	direithy	by	setting)		
	ZCU	m, Ex)	NM =	S _F (S	5) L(S-	1, 2)		
	and	C ₂ (0)	εχ)=	2 -d 2	Gx (T)	/ н _х (т.).	
Verif	iy the	speciali	ization 1	onpesty	by I	Deligne - F	Libet P-ac	لمر
L-Qu	nctum,							
4	.s, X)	mwp	olates	dassica	d 1-v	values		
		and	Satisby	Lpc	1-5, x)=	• G _x (u	-1)/	
							H _x (u ⁵ -1)
							/	'1
Next	t war	it to	extend	и	sp ne	worms.		

For
$$f, g = modular forms over F$$

 $define D(S, f, g) = \overline{Z} C(m, f) C(m, g) Nm^{S}$
 $Define \overline{f}$ S.t. $C(m, \overline{f}) = C(m, f)$
Let Mn be the measure of a fundamental
domain of $\partial t^{d}/_{\Gamma}(t_{n}S, n)$ W.f.t.
 $d\mu(Z) = \int_{V=1}^{d} y_{v}^{-2} dx_{v} dy_{v}$
For $f, g \in M_{F}(n)$ whose product 13 cusp form
 $< f, g \ge -\frac{h}{2} - M_{n}^{-1} \int_{T} \overline{f}(Z) g(Z) y^{K} d\mu(Z) - H^{d}/_{\Gamma}(t_{n}S, n)$

newgorms

Prop. For every integral ideal
$$a$$
, $f \in M_{\mu}(n, \Psi)$
 $\exists !$ fla $\in M_{\mu}(an, \Psi)$ s.t.
 $c(m, fla) = c(a^{T}m, f)$
let $S'_{\kappa}(n, \Psi) \subset S_{\kappa}(n, \Psi)$ spanned by $g|a$
 $pr g \in S_{\kappa}(b, \Psi)$, b aussurs of n , $b \neq n$,
 a runs over all divisors of $b^{T}n$
let $S'_{\kappa}(n, \Psi) = S'_{\kappa}(n, \Psi)^{T}$.
This is stable under $T(m)$ for all m .
Pelpine a newform to be an element in $S'_{\kappa}(n, \Psi)$
normalized $(c(U_{F}, F)=1)$ eigenform for all $T(m)$

with coeff. in O							
A newform f) is called oramony if ccp. f) is							
a unit in () If I have level my then							
the control in the of the former into the second se							
ef ^{‡D} is an eigengorm of level nop where							
P= TP and is called the p-stabilized Plp							
ptn							
newform associated with f.							

§ 9.
In (ast section, we extend dassical Es to A-adic
Ers naturally so that dassical Ers occurs as
specializations of A-adic ones.
This section do the same Our cuspidal newforms.
Fix
$$\overline{Fzpers}$$
 of \overline{Fzpers} containing \overline{Gp}
and assume all extensions L considered below
is in \overline{Fzpers} .
Note that $S_{n}^{*}(n\bar{r},\tilde{\chi}) \stackrel{def}{=} \stackrel{\circ}{U} \stackrel{\circ}{=} S_{n}^{*}(np',\tilde{\chi})$
 $Eg. over A.$

For
$$L/F_{\Lambda}$$
 (mile extension (we may choose
 $\Lambda = Z_{p}(K) UTB$)
let $S_{L}^{\circ}(n, \tilde{\chi}) = S_{F_{\Lambda}}^{\circ}(n, \tilde{\chi}) \otimes L$
Let O_{L} integral dosine of Λ in L
 $S_{O_{L}}^{\circ}(\bar{n}, \tilde{\chi})$ submod. whose defining data
 $are in O_{L}$.
Fix $\tilde{S} = 0$ order P' , $D(S] \subset O_{r}$.
 $k_{r} = Frac O_{r}$, $\Lambda_{r} = O_{r} UTB$.
 $S_{\Lambda_{r}}^{\circ} = S_{\Lambda_{r}}^{\circ}(\bar{n}, \tilde{\chi})$, $M_{\Lambda_{r}}^{\circ} = M_{\Lambda_{r}}^{\circ}(\bar{n}, \tilde{\chi})$.
 $\Psi_{K,\tilde{S}}$, $M_{\Lambda_{r}}^{\circ}/(L+T-Su^{**})M_{\Lambda_{r}}^{\circ} \rightarrow M_{F}(n_{r}^{\circ}, \tilde{\chi})$.

Let no greatest divisor of n prome to p.
Suppose
$$f_{k}$$
 is p-stab. newform of vit k
Occurring in the standard decomp. for some
element in In $\Phi_{k,s}$
($\forall cusp$ form f of level n,
 $\exists ! f = \sum \beta_i f_i(\vartheta_i z)$
 $\beta_i \in \mathbb{C}$, f_i normalized newform of
level m_i , $m_i \vartheta_i / n$)
Then if no divides level of f_k
=) no $f_k(\vartheta_i z)$ Occurs in such a
decorp. for $\vartheta \neq (i)$

choose a combination
$$t = \sum_{i=1}^{5} a_i T(n_i) , a_i \in O'$$

 t'/F_T finite ext. 5.1.
 $t: M_{\mu}^{\circ}(n_i f', 1 \leq x p_{i} v^{2-\mu}) \rightarrow 1 \leq i f_{\mu}$
Let $t f_{\mu} = Cf_{\mu}, C^{+ \rho}$.
 t auts on f.g. $\Lambda' - mad$ $M_{\Lambda_{I}}^{\circ} \otimes \Lambda', \Lambda' = O'BTB$
has chair poly. $g(x) \in \Lambda'i \leq as t$ integral over Λ' .
Let $Y = (+T - 3u^{\mu-2})$
 $= cher.poly(t) M_{\Lambda_{I}}^{\circ} \otimes n'/Y^{-1})$
 $= cher.poly(t) M_{\Lambda_{I}}^{\circ} \otimes n'/Y^{-1}$
 $\psi_{\mu,3} = g_{I} q_{I} \leq x^{\mu-1}(x-C) \mod Y$

1= deg 91x7.

Let L sputting field of
$$g(x)$$
 over F_A
P extension of Y to O_L
=> 3: not α of $g(x)$ in O_L s.t.
 $\alpha = c$ mod P
Let $n(x) = \frac{g(x)}{x-\alpha} + O_L(cx)$
=> $h(L) m_L^{\alpha}$ is induced for Cx
By hypothesis = $\mathcal{F} \in m_{A_L}^{\alpha}$ s.t. for occurs in
 $\mathcal{F}_{R-S}(\mathcal{F})$. Then $h(L) \mathcal{F}$ is eigenfunction for all
Header operators and P gives $nm = 2\alpha \sigma$ multiple
 $\sigma = f_R$

Thm. Suppose
$$f_{k}$$
 is a p-stabilized new (low in
 $S_{k}^{\circ}(\Omega, \alpha)$ with $coegg$ in O , a givite
extension of Zp contained in \overline{Gp} .
Then there exists an eigenform $\mathcal{P}\in S_{OL}^{\circ}(\overline{\Omega}, \alpha w^{k-2})$
for some givita extension L of F_{n} s.t.
 $\mathcal{P} \equiv f_{k} \mod \widetilde{P}_{k}$ for some \widetilde{P}_{k} of O_{L}
extensing the prime $P_{k} \equiv ((HT) - u^{k-2})$ of Λ .
P(). Choose primitive even char. χ s.t.
(i) χ_{α}^{-1} is char. of Chall $F(S_{p}\omega)/F$)
(ii) χ_{W}^{3-k} has conductor charisible by P
(iii) $cond(\alpha^{-1}\chi_{W}^{3-k})$ (cond(χ_{W}^{3-k})

egme, x, y (T) e m^ (ā, aw⁻²) $\Lambda = O[T], O = O[X, \Psi].$ and $(f_{k}, e_{g_{mp}}, \chi, \chi(u^{k-1})) \neq 0$ =) we may lift fx for K large enough to a normalized eigenform of eso, (ā, aw) Then we can also lift eigenforms f- ((8, f) f(82) lifts to 7- ((8,7)762) dry S' (ā, and bounded independent of L =) there are at most finitely many distinct normalized 1-adic ergenquins

gin is a specialization of gi =) $\mathcal{F}_{i} = \mathcal{G}_{j}^{(m)} \mod \widetilde{\mathcal{P}}_{k'}$, $\mathcal{G}_{j}^{(m)} = f_{k'} \mod \mathcal{G}_{k'}^{\lambda_{j}(m)}$ Let ICOL, I= { x \in O_1 ; x mod P_k, = 0 mod q3 " Ym ES } Suppose XEINA $[f m \in S, m > N, B_m^{N-(m)} \equiv 0 \mod p^N$ x E A/Pri > OL/Pri > OGm 13 divisible by p^N =) $x \in (P_{k'}, p^{n}) = (P_{k}, p^{n})$ Sma $\Lambda(P_R, P^N) = P_R =)$ INACPR =7 Z contained in some Pic above Pic

and $\mathcal{P}_i = f_k \mod 1$.