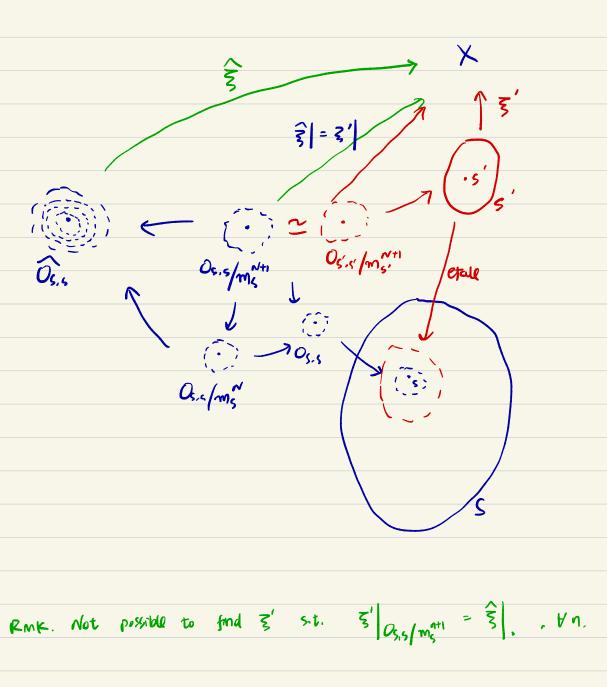
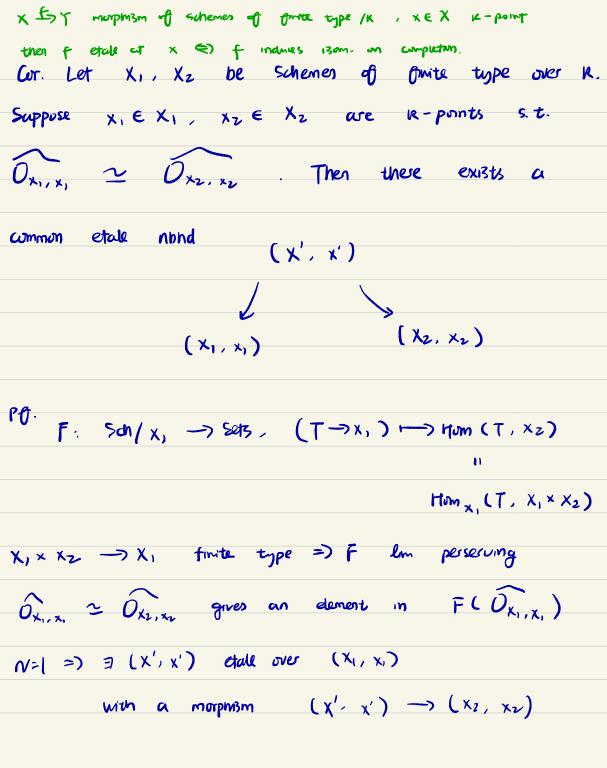
Goal. 1- desingularization => Artim's approximation & algebraization 2. algebraic starks with linearly reductive stabilizers at closed pomts are etale locally quotient stacks. Local structure of algebraic stacks.

Artin algebraization and quotient stacks
PArtin approximation.
R alg. dosed field
Def. A
$$\rightarrow$$
 B ang map of Noeth. rings is called
geometrically regular if it is flat and for every
prime P C A and every finite freed extension $e^{-\int_{1}^{1}g^{-} \operatorname{ext.}}$
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} K'$ is regular prime
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} K'$ is regular prime
 $ring = ar.$
 $Thm. (Neron - Popescu desingularization) (070 c)
Let A \rightarrow B be a ang map of Noeth. rings. then
it is geon. regular (=) $B = lim_{B} \otimes_{A} B$ direct lim_{A}
 $geometrically regular (=) B = lim_{B} \otimes_{A} B$ direct lim_{B}
 $ring = ar.$
 $ring = ar.$
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $B \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $R \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $R \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $R \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $R \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ the algebra $R \otimes_{A} R'$ is regular.
 $R(P) \rightarrow R'$ is not geon. regular.
 $R(P) \rightarrow R'$ is not geon. regular if R propert.$

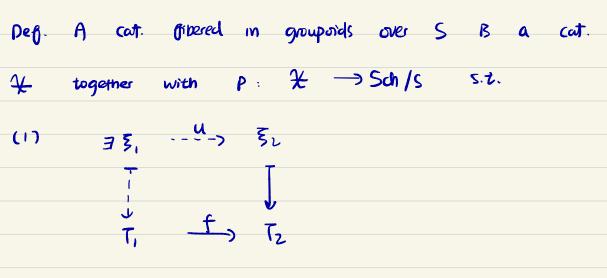
$$\begin{array}{rcl} 07PX \\ \text{Thm} & IG & S & B & a & \text{scheme of } & \text{firster type over } R \\ \text{and } se & S & B & a & K-point , & \text{then } O_{5,S} & \longrightarrow O_{5,S} \\ \text{is geom. regular.} & A & \text{load ang } A & B & \text{added } G & \text{ring} \\ \text{if } A & \longrightarrow A & \text{geom. regular.} \\ \text{if } A & \longrightarrow A & \text{geom. regular.} \\ \text{Thm. (Aron opproximation)} \\ \text{Let } S & \text{be a scheme of } (\text{limite type over } K & \text{and} \\ F & sch (S & \longrightarrow Sets & \text{be a lum preserving} \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

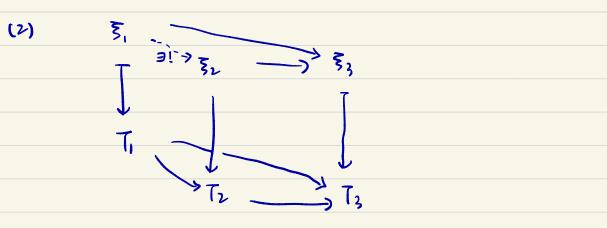


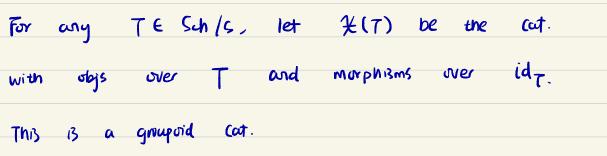
Alternatule formulation.
(A, m) local Horstelian Grang
(ar. Let A fg. K-adg.,
$$m \in A$$
 maximal ideal.
fir..., fm $\in A \subseteq X_{12}, ..., Xn]$
 $a \in \hat{A}^n$
 $a \in \hat{A}_n$
 $f \in A_m$ s.t. $f : (\hat{a}) = 0$. $\forall i$.
Then $\forall N \ge 0$. $\exists (A, m ? \rightarrow (A', m'))$ etale
 $a' \in A'^n$ s.t. $a' \equiv \hat{a} \mod M^{N+1}$.
 $a' \in A^n$
 $m \in A^n$
 $m \in A^n$
 $m \in A^n$
 $m \in A^n$



(inducing Bon.
$$0_{X_{2},X_{2}}/m_{X_{2}}^{2} \rightarrow 0_{X',X'}/m_{X'}^{2}$$
.
Went: $0_{X_{2},X_{2}} \stackrel{\sim}{\longrightarrow} 0_{X',X'}$.
Identify $0_{X',X'} \stackrel{\sim}{\cong} 0_{X_{1},X_{2}} \stackrel{\sim}{\longrightarrow} 0_{X_{2},X_{2}}$
ETS (A. m) local advertision , $\phi: A \rightarrow A$ local inducing
 $A/m^{1} \stackrel{\sim}{\longrightarrow} A/m^{2}$, then ϕ ison.
 $NA_{K} \stackrel{=}{\Rightarrow} \phi$ ison.
Then $(X', X') \rightarrow (X_{2}, X_{2})$ etals of X' , hence
etable in an open normal.







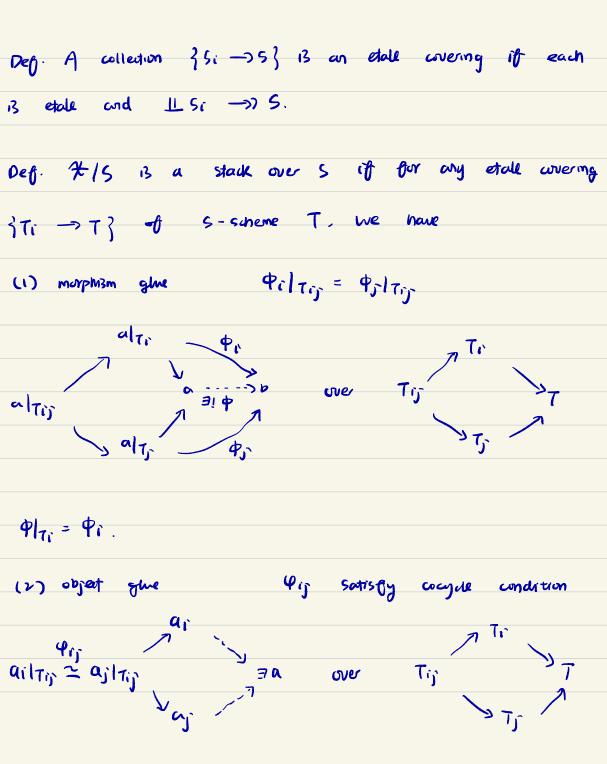
Def: A cut
$$\mathcal{X}$$
 fibered in groupoids over S is
culled lim preserving if
 $\lim_{M} \mathcal{X}(\operatorname{spec} B_{\Lambda}) \longrightarrow \mathcal{X}(\operatorname{spec} \lim_{M} B_{\Lambda})$
is an equivalence of cut for any direct lim $\{B_{\Lambda}\}$
of O_{S} - algs.
Thm. (Groupoid version of Arbin opproximation)
Let S be a scheme of finite type over is
 \mathcal{X} lim preserving cut fibered in groupoids over S
set S a R -point . $\mathcal{Z} \in \mathcal{X}(\operatorname{spec} O_{S,S})$
for any $N > O_{-} = \operatorname{etale}$ morphism $(S', S') \rightarrow (S, S)$
and $\mathcal{Z}' \in \mathcal{X}(S') = S$.

2. Artin algebraization
Artin appro. => (J appro. => Artin alg.
(A.m.) lad nng, M. A-mod,
$$Gr_m M = \bigoplus_{n\geq 0} m^n M/m^{mn} M$$
.
Thim. (conrad - de Jong approximation)
Let χ be a lim preserving cat. Obered in groupoids/k.
Let (R, m) be a complete local Noeth. K-alg.
 $\hat{\xi} \in \chi$ (Spec.R). Then $\forall N \geq 0$, there exist
(1) (Spec.R, u) altime scheme , $finite$ type/k, K-point u
(2) $\overline{\xi}_A \in \chi$ (Spec.A)
(3) α_{NH} : $R/m^{NH} \cong A/u^{NH}$
(4) $\hat{\xi} |_{R/m^{nH}} \cong \tilde{\xi}_A |_{A/u^{NH}}$ via α_{NH} .
(5) $Gr_m R \cong Gru A$ of graded K-alg.

Arim adgebraization.
Deg.
$$\chi$$
 cal. fibered in groupoids / K.
R complete local North. K-alg., X dosed point
 $\exists \in \chi (SpecR)$ is called formally versal at X iff
Speck(X) \longrightarrow SpecB \longrightarrow SpecR
 $1 \quad \frac{3}{2} \quad \frac{7}{1} \quad \frac{3}{5}$
Speck(X) \longrightarrow SpecB \longrightarrow SpecR
 $1 \quad \frac{3}{2} \quad \frac{7}{1} \quad \frac{3}{5}$
unlere B' \longrightarrow B Surj: of autiman K-alg.
i.e. unenever B' \longrightarrow B Surj: of autiman K-alg.
SpecB \longrightarrow SpecR, $y \in$ SpecB dosed over X, $kcy) = k(X)$
 $\eta' \in \chi (SpecB')$
 $\alpha : \eta' [SpecB \stackrel{\sim}{=} \frac{5}{5}]$ SpecB
 $\exists \alpha' : SpecB' \longrightarrow$ SpecR S.t. Ω
and $\frac{2}{5}[zpecR' \stackrel{\sim}{=} \eta'$
extending α .

Then (Artin algebraization).
It lim preserving cat. fibured in groupoids / K
(R,m) complete local Noeth. K-adg.

$$\xi \in \chi$$
 (speck) formally versal. Then there exist
(1) (spech, w) finite type / k with a K-point
(2) $\xi_A \in \chi$ (spech)
(3) $a : R \xrightarrow{\sim} A_u$ of K-adg.
(4) compatible family $\theta \in \xi$ speck/m^{nt1} $\xrightarrow{\sim} \xi_A$ spech/m^{nt1}, $\forall n$.



$$\varphi_{\Gamma}: a|_{T_{\Gamma}} \simeq a_{\Gamma} \quad \text{compatible with } \varphi_{\Gamma} \text{ on } T_{\Gamma}.$$

$$Def. & \langle / S \quad \text{Stack is algebraic } P$$

$$(1) \quad (1): \quad \langle + - \rangle \quad \langle + \times_{S} \quad \langle + \mid B \mid representable$$

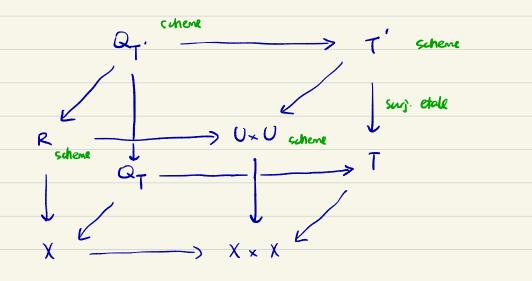
$$(2): \exists \quad \text{suheme } \cup , \quad representable \quad \text{suboth } surj. \quad (J \rightarrow) \quad \langle + \rangle.$$

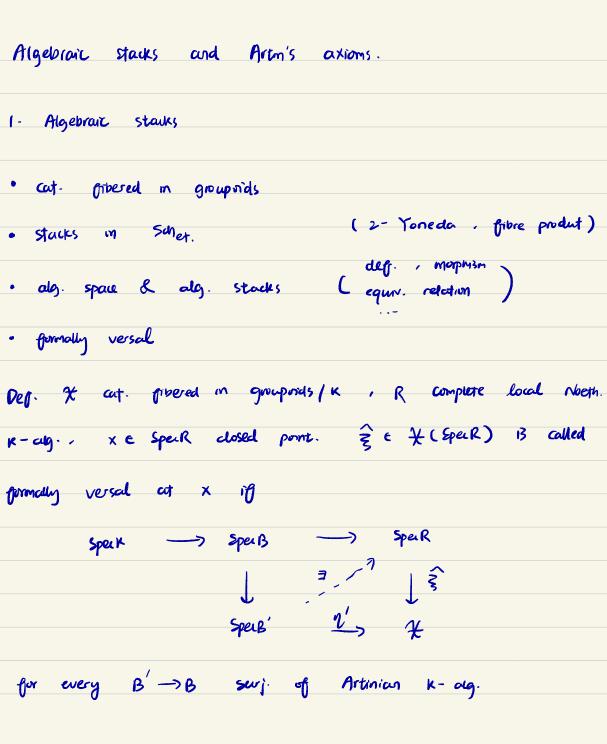
2. Representability of the diagonal.

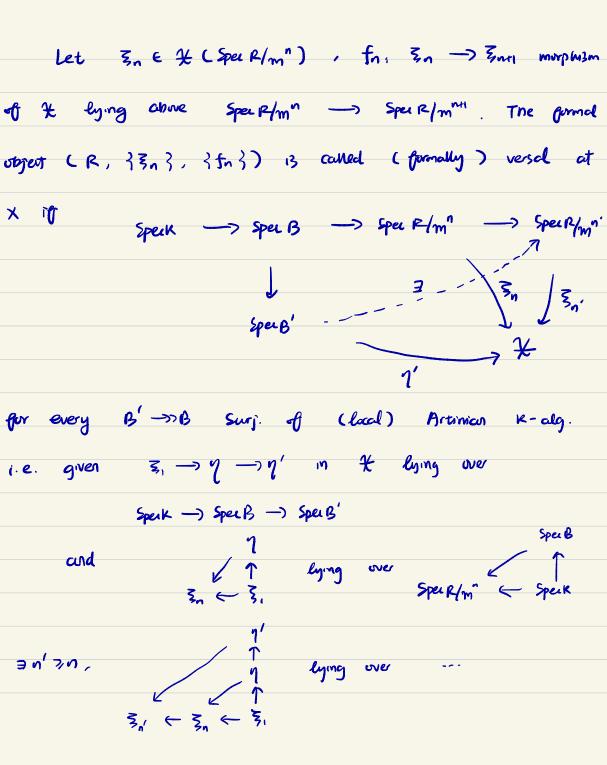
Thm. The diagonal of an algebraic space / stack is rep. by schemes / rep.

Pf. X alg. space,
$$U \rightarrow X$$
 stale presentation.
 $R = U \times_{x} U$ scheme.
 $T \rightarrow X \times X$ from a scheme, want $Q_T = X \times_{x \times X} T$
scheme

$$U \rightarrow X$$
 swj. etale, rep. by schemes
=> $U \times U \rightarrow X \times X$ swj. etale, rep. by schemes







(4) (Openness of versality) V ZUE & (U), U scheme of Binite type/K, UEU s.t. ξυ 13 formally versal cot u (m χ(Sper Du, u)). then 3, 13 formally versal in an open ubind of u. Pf. · rep. of diagonal => any U-> & from somene is rep. Uxx7 ->UxT * -> * * * Speak U Scheme • V X: Sperk -> X , And (2) & (3) =) = complete local North. K-alg. (R, m) R/m=k, Sperk -> SperR × , ¥ 2 formally versal

Artm algebraization => = SpecA (K of finite type UE SpeiA K-point ₹A € ₹ (SpeiA) a: R ~ Au of K-alg. compatible $\widehat{\xi}$ speck/mⁿ⁺¹ $\xrightarrow{\sim} \xi_A$ spec A/u^{n+1} 4 NZO U= sperA, Zu = ZA E + (U) formally versal at u (4) >) Zu is firmally versal in an open nord of u => U -> * 13 smult in an open nond of a 11