Choose six problems from the following list. If you attempt more than six, please choose which six problems should be graded. For true/false problems, give a proof or a counterexample as appropriate.

1. True/false: If \(f + g \) is integrable, then one of \(f \) or \(g \) is integrable as well.

2. Let \(S \) be a nonempty subset of the positive integers, and set \(S' = \{1 - \frac{1}{n} \mid n \in S\} \). Show that \(\sup(S') < 1 \) if and only if \(S \) is bounded above.

3. Let \(S, T \) be nonempty subsets of the real numbers, and suppose that
 i. \(\forall x \in S, y \in T, x \leq y \), and
 ii. \(\forall \epsilon > 0, \exists x \in S \) and \(y \in T \) such that \(y - x \leq \epsilon \).

 Prove that \(\sup(S) = \inf(T) \).

4. Prove that any polynomial is integrable on any closed interval. (Hint: Use integrability of monotone functions.)

5. True/false: If \(x, y \) are real numbers such that \(x + 1 \leq y \), there is an integer \(n \) such that \(x \leq n \leq y \).

6. Prove the triangle inequality: \(|x + y| \leq |x| + |y| \) for any real numbers \(x, y \).

7. If \(f : \mathbb{R} \to \mathbb{R} \) is an even function, show that \(F(x) = \int_0^x f(x)dx \) is an odd function.

8. Evaluate the limit \(\lim_{x \to 0} x \sin \frac{1}{x} \). (Hint: Use the "squeezing theorem.")

9. True/false: If \(S, T \) are nonempty bounded-above subsets of \(\mathbb{R} \) and \(f : S \to T \) is a surjective function such that \(f(x) < x \ \forall x \in S \), then \(\sup(T) < \sup(S) \).