Speaker: Jeanine Van Order

Title: Integral presentations of $GL(n)$-automorphic L-functions over CM fields and applications

Abstract: Let $n \geq 2$ be an integer, and let π be an irreducible cuspidal automorphic representation of $GL(n)$ over the rationals (or more generally any totally real number field F). Let K be an imaginary quadratic field (or more generally any totally imaginary quadratic extension of F), and let π_K denote the quadratic base change of π to $GL_n(A_K)$. Motivated by various arithmetic applications such as the conjectures of Birch-Swinnerton-Dyer and Deligne, I will describe a new approach to studying average central values of the twisted base change L-function $L(s, \pi_K \otimes \chi)$, with χ ranging over families of ring class Hecke characters of K. The key point is to realize the averages as the constant terms of certain Eisenstein series. This identification can be used to give an automorphic interpretation of the so-called Galois averages studied in Iwasawa theory, and more concretely to derive some relevant nonvanishing estimates. For instance, in the special case where π is cohomological, it is possible to generalize a well-known theorem of David Rohrlich using recent progress towards Deligne’s rationality conjecture for automorphic motives. If time permits, then I will also explain some other arithmetic applications.