SQUARE ROOTS (mod p)

Let $p \equiv 3 \pmod{4} = \text{prime}$, and let $1 \le a < p$.

We will show that if $x^2 \equiv a \pmod{p}$ is solvable for some $1 \leq x < p$ then all solutions are given by

$$x \equiv \pm a^{\frac{p+1}{4}} \pmod{p}.$$

Problem: Assume that $x^2 \equiv 11 \pmod{19}$. Find x.

Solution: It follows from (1) that $x \equiv 11^5 \pmod{19} = 7$. We check that $7^2 \equiv 11 \pmod{19}$. The other solution is $-7 \equiv 12 \pmod{19}$.

Proof. We will now prove that (1) gives all the square roots of $a \pmod{p}$. Since we assume there is a solution to $x^2 \equiv a \pmod{p}$ we can raise both sides to the $\frac{p-1}{2}$ power yielding $1 \equiv x^{p-1} \equiv a^{\frac{p-1}{2}} \pmod{p}$.

It follows that

$$\left(\pm a^{\frac{p+1}{4}}\right)^2 \equiv a^{\frac{p+1}{2}} \equiv a^{\frac{p-1}{2}} \cdot a \equiv a \pmod{p}.$$

It only remains to show that $x \equiv \pm a^{\frac{p+1}{4}} \pmod{p}$ are the only solutions. This follows from the fact that a quadratic equation $x^2 \equiv a \pmod{p}$ either has no solutions or exactly 2 solutions as long as $a \not\equiv 0 \pmod{p}$. To see this last part assume $r^2 \equiv a \pmod{p}$. Then $\pm r$ are two distinct square roots of $a \pmod{p}$. Suppose $t^2 \equiv a \pmod{p}$. This implies

$$t^2 \equiv r^2 \pmod{p}$$
.

It follows that p|(t-r)(t+r) so p must divide one of the two factors, i.e.,

$$p|(t-r) \implies t \equiv r \pmod{p}$$
 while $p|(t+r) \implies t \equiv -r \pmod{p}$.