NOTES ON THE POHLIG-HELLMAN ATTACK ON THE DISCRETE LOG PROBLEM

Let $p = \text{large prime and } 1 < \alpha < p$ a primitive root (mod p). If α, β, p are known and

 $\alpha^x \equiv \beta \pmod{p},$

the Discrete Log Problem (DLP) is to find x with 1 < x < p.

Solving DLP with a brute force attack of R tries: Let's assume we know the solution x is not too big. For example assume we know $1 \le x < R$ for some small integer R. Then we simply compute

 $\alpha^0 \equiv 1 \pmod{p}, \ \alpha \pmod{p}, \ \alpha^2 \pmod{p}, \ \alpha^3 \pmod{p}, \qquad \dots, \qquad \alpha^{R-1} \pmod{p}.$

One of the above R numbers has to equal to β . Then we have found x.

Finding $x \pmod{q}$ with the Pohlig-Hellman attack:

Step 1: Find a small integer q where q divides p - 1.

Step 2: Compute $A = \alpha^{\frac{p-1}{q}} \pmod{p}$.

Step 3: Compute $B = \beta^{\frac{p-1}{q}} \pmod{p}$.

Step 4: Solve $A^y \equiv B \pmod{p}$ with a brute force attack of q tries. Then $y \equiv x \pmod{q}$.

Example: Consider the Discrete Log Problem: $2^x \equiv 17 \pmod{61}$. Find $x \pmod{5}$.

Step 1: $5 \mid (61 - 1)$.

Step 2: $A \equiv 2^{12} \pmod{61} = 9$.

Step 3: $B \equiv 17^{12} \pmod{61} = 20.$

Step 4: We make 5 tries in trying to solve $9^y \equiv 20 \pmod{61}$:

 $9^0 \equiv 1 \pmod{61}$, $9^1 \equiv 9 \pmod{61}$, $9^2 \equiv 20 \pmod{61}$, $9^3 \equiv 58 \pmod{61}$, $9^4 \equiv 34 \pmod{61}$. We see that y = 2 is the solution. So $x \equiv 2 \pmod{5}$. Actually x = 47 is the solution.

Why does this work? The Pohlig-Hellman attack works because

 $\alpha^{x} \equiv \beta \pmod{p} \implies \alpha^{x \cdot \frac{p-1}{q}} \equiv \beta^{\frac{p-1}{q}} \pmod{p} \implies \alpha^{y \cdot \frac{p-1}{q}} \equiv \beta^{\frac{p-1}{q}} \pmod{p},$ where $y \equiv x \pmod{q}$.

Finding x with the Pohlig-Hellman attack:

If one finds $x \pmod{q}$ for sufficiently many coprime integers q then one may solve for x using the Chinese Remainder Theorem.