
FINDING ALL SQUARE ROOTS (mod pq) IS
AS HARD AS FACTORING

Question: Let p, q be primes and let 1 ≤ a < pq with GCD(a, pq) = 1. How many solutions
1 ≤ x ≤ pq are there to the equation

x2 ≡ a (mod pq)?

Let’s do some examples to see if we can formulate a conjecture about this.

Example 1: Let 1 ≤ x < 15. Solve x2 ≡ 1 (mod 15). With a brute force search, we find the
four solutions x = 1, 4, 11, 14. These can be written x ≡ ±1,±4 (mod 15).

Example 2: Let 1 ≤ x < 15. Solve x2 ≡ 2 (mod 15). A brute force search shows there are
no solutions.

Example 3: Let 1 ≤ x < 15. Solve x2 ≡ 4 (mod 15). With a brute search, we find the four
solutions x = 2, 7, 8, 13. These can be written x ≡ ±2,±7 (mod 15).

Example 4: Let 1 ≤ x < 15. Solve x2 ≡ 7 (mod 15) and x2 ≡ 8 (mod 15) and x2 ≡ 11
(mod 15) and x2 ≡ 13 (mod 15) and x2 ≡ 14 (mod 15) A brute force search shows there are
no solutions for all these cases..

Conjecture: Let p, q be primes. Let 1 ≤ a < pq with GCD(a, pq) = 1. Then the equation

x2 ≡ a (mod pq) either has exactly 4 solutions or no solutions with 1 ≤ x < pq.

Remark: The above conjecture can be proved (see section 3.9 in the Trappe-Washington
book).

We now prove that finding 4 square roots (mod pq) (if they exist) is as hard as factoring pq.

Proof: Let ±u,±v be the four square roots of a (mod pq), i.e.,

u2 ≡ a (mod pq), v2 ≡ a (mod pq) =⇒ u2 − v2 ≡ 0 (mod pq).

For the four square roots to be distinct (mod pq) it is necessary that u 6≡ ±v (mod pq).

Now u2 − v2 ≡ 0 (mod pq) implies that

(u− v)(u + v) ≡ 0 (mod pq).

This means that u− v must be divisible by either p or q but not both. So we can factor pq by
computing GCD(u− v, pq).

Example: Factor n = 77 by finding the four solutions to x2 ≡ 1 (mod 77). Clearly x ≡ ±1
(mod 77) are two solutions, i.e., x = 1, 76. With a brute force search we find the other two
solutions x ≡ ±34 (mod 77), i.e., x = 34, 43. Then

342 − 12 ≡ 0 (mod 77).

When we compute
GCD(34− 1, n) = 11

we find the factorization of n = 77.
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