Speaker: Nadir Matringe

Title: The sign of linear periods

Abstract: Let G be a group with subgroup H, and let (π, V) be a complex representation of G. The natural action of the normalizer N of H in G on the space $\operatorname{Hom}_H(\pi,\mathbb{C})$ of H-invariant linear forms on V, provides a representation χ_{π} of $\frac{N}{H}$, which is a character when $\operatorname{Hom}_H(\pi,\mathbb{C})$ is one dimensional. If moreover G is a reductive group over a p-adic field, and π is smooth irreducible, it is an interesting problem to express χ_{π} in terms of the possibly conjectural Langlands parameter ϕ_{π} of π . We will consider the following situation: $G = GL_m(D)$ for D a central division algebra of dimension d^2 over a p-adic field F, H is the centralizer of a non central element $\delta \in G$ such that δ^2 is in the center of G, and π has generic Jacquet-Langlands transfer to $GL_{md}(F)$. In this setting the space $\operatorname{Hom}_H(\pi,\mathbb{C})$ is at most one dimensional. When $\operatorname{Hom}_H(\pi,\mathbb{C}) \simeq \mathbb{C}$ and $H \neq N$, we prove that the value of the χ_{π} on the non trivial class of $\frac{N}{H}$ is $(-1)^m \epsilon(\phi_{\pi})$ where $\epsilon(\phi_{\pi})$ is the root number of ϕ_{π} . This is a joint work with U.K. Anandavardhanan, H. Lu, V. Sécherre and C. Yang.