Application of functional transcendence to bounding the number of points on curves

Ziyang Gao

CNRS, IMJ-PRG

July 22, 2019

1 / 21

Faltings's Theorem

Let $g \ge 0$ and $d \ge 1$ be two integers. Let C be an irreducible smooth projective curve of genus g, defined over a number field K of degree d. In 1983, Faltings proved the Mordell Conjecture.

Theorem (Faltings 1983)

When $g \ge 2$, the set C(K) is finite.

However Faltings's 1983 proof does not give a good upper bound on #C(K).

Faltings's Theorem

In 1988, Vojta gave a second proof to Faltings's Theorem. The proof was simplified and generalized by Faltings in 1989, and further simplified by Bombieri in 1990. This new proof (BFV) gives an upper bound

$$\#C(K) \leq c(g, d, h_{\Theta}(J))^{1+\operatorname{rk}_{\mathbb{Z}}J(K)}$$

where J = Jacobian of C, and $h_{\Theta}(J)$ is the *Theta height* of J.

Upper bound: Mazur's conjecture

Mazur asked the following question in 1986.

Conjecture (Mazur 1986)

Let $P_0 \in C(\overline{\mathbb{Q}})$, J = Jacobian of C and $j_{P_0} \colon C \to J$ be the Abel-Jacobi embedding via P_0 . Let Γ be a finite rank subgroup of $J(\overline{\mathbb{Q}})$. Then

$$\#(\Gamma \cap j_{P_0}(C)(\overline{\mathbb{Q}})) \le c(g)^{1+\mathrm{rk}\Gamma}.$$
 (1)

Our main result is

Theorem (Dimitrov-G'-Habegger, forthcoming)

For any $g \ge 2$, there exists a number $\delta(g) > 0$ such that the following property holds: If $h_{\Theta}(J) > \delta(g)$, then (1) holds.

Two upshots

Theorem (Dimitrov-G'-Habegger, forthcoming)

For any $g \ge 2$, there exists a number $\delta(g) > 0$ such that the following property holds: If $h_{\Theta}(J) > \delta(g)$, then

$$\#(\Gamma \cap j_{P_0}(C)(\overline{\mathbb{Q}})) \leq c(g)^{1+\mathrm{rk}\Gamma}.$$

Two particular cases of this theorem.

- ▶ If we take $P_0 \in C(K)$ and $\Gamma = J(K)$, then the upper bound gives $\#C(K) \le c(g, d)^{1+\operatorname{rk} J(K)}$. This is a weaker form of Mazur's conjecture.
- ▶ If we take $\Gamma = J(\overline{\mathbb{Q}})_{tor}$, then the upper bound becomes a desired bound on the size of torsion packets on C, which by abuse of notation we denote by $C(\overline{\mathbb{Q}})_{tor}$ (towards uniform Manin-Mumford).

Known results on Mazur's conjecture

- ► For rational points, here are some known results towards the upper bound $\#C(K) \le c(g, d)^{1+\mathrm{rk}J(K)}$.
 - ➤ David–Philippon 2007: when $J \subset E^n$.
 - David–Nakamaye–Philippon 2007: for some particular families of curves.
 - ➤ Katz–Rabinoff–Zureick-Brown 2016: when $rkJ(K) \le g 3$.
 - ➤ Alpoge 2018: average number of #C(K) is finite when g = 2.
- Now For algebraic torsion points, here are some known results towards the upper bound $\#C(\overline{\mathbb{Q}}) \le c(g, d)$.
 - Katz-Rabinoff-Zureick-Brown 2016: assuming some good reduction behavior.
 - ➤ DeMarco–Holly–Ye 2018: g = 2 bi-elliptic independent of d.

Review of the BFV method

(For simplicity assume Γ is finitely generated.) On $J(\overline{\mathbb{Q}})$, there is a function $\hat{h}_L \colon J(\overline{\mathbb{Q}}) \to \mathbb{R}_{\geq 0}$ vanishing precisely on $J(\overline{\mathbb{Q}})_{\text{tor}}$.

- $\Rightarrow \hat{h}_L \colon \Gamma \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}_{\geq 0}.$
- "Normed Euclidean space" ($\Gamma \otimes_{\mathbb{Z}} \mathbb{R}$, \hat{h}_L), and Γ becomes a lattice in it.

Theorem (Vojta, Faltings, Bombieri, David-Philippon, Rémond)

#large points $\leq c(g)7^{\text{rk}\Gamma}$.

⇒ to prove Mazur's Conj, it suffices to establish

Algebraic points are "far" from each other, i.e.

$$\hat{h}_L(P-Q) \ge c'(g)h_{\Theta}(J)$$
 for all $P \ne Q$ in $J(\overline{\mathbb{Q}})$.

In practice, need to add a calibration term to this inequality.

6/21

A height inequality

Theorem (G'-Habegger, Ann. 2019)

Let S be a curve over $\overline{\mathbb{Q}}$, let $\pi \colon \mathcal{A} \to S$ be an abelian scheme, and let \mathcal{L} be a relatively ample line bundle on \mathcal{A} . Let X be an irreducible subvariety of \mathcal{A} dominant to S.

> If X is non-degenerate (defined later), then there exist c = c(X) > 0 and a Zariski open dense $U \subseteq X$ such that

$$c(\hat{h}_{\mathcal{L}}(x)+1) \geq h_{\Theta}(s)$$

for all $s \in S(\overline{\mathbb{Q}})$ and $x \in (U \cap A_s)(\overline{\mathbb{Q}})$.

> X is degenerate $\Leftrightarrow X =$ abelian subscheme + torsion section + "constant part".

Mazur's conjecture for 1-parameter families

Let $\mathfrak{C} \to S$ be a 1-parameter of curves of genus $g \ge 3$. Assume it is non-isotrivial. We have a relative Jacobian $\mathfrak{J} \to S$.

- The morphism $\mathfrak{C} \times_{\mathcal{S}} \mathfrak{C} \to \mathfrak{J}$, fiberwise defined by $(P, Q) \mapsto [P Q]$, defines a subvariety of \mathfrak{J} , which we call $\mathfrak{C} \mathfrak{C}$.
- Apply the height inequality to $A = \mathfrak{J}$ and $X = \mathfrak{C} \mathfrak{C}$. It is not hard to show that X is non-degenerate by part (2) of the theorem. We get

$$c(\hat{h}_{\mathcal{L}}(P-Q)+1) \geq h_{\Theta}(\mathfrak{J}_s)$$

for all $s \in S(\overline{\mathbb{Q}})$, $P, Q \in \mathfrak{C}_s(\overline{\mathbb{Q}})$ such that $P - Q \in U$.

[Dimitrov—G'—Habegger, preprint 2019] With some extra details (packing argument), we prove the main theorem for 1-parameter families.

Digest of non-degeneracy

$$c\hat{h}_{\mathcal{L}}(x) + c' \geq h_{\Theta}(s).$$

- > c' (partly) comes from the Height Machine.
- \triangleright Let us normalize \mathcal{L} so that it is trivial along the zero section.
- ➤ The height function h_{Θ} on $S(\overline{\mathbb{Q}})$ is defined by an ample line bundle, say \mathcal{M} .
- > Then the height inequality becomes the comparison of two line bundles $\mathcal L$ and $\pi^*\mathcal M$ when restricted to X. We wish that $\mathcal L^{\otimes N}|_X$ is "bigger" than $\pi^*\mathcal M|_X$ for some $N\gg 0$.
- > To achieve this, it suffices to prove that $\mathcal{L}|_X$ is "big".
- > So the definition of X non-degenerate should reflect the fact that $\mathcal{L}|_X$ is big.

This is not vigorous as S, A, X are not projective.

General case: preparation

To prove the result for general case, we need to investigate the universal curve $\mathfrak{C}_g \to M_g$ of genus g. Here M_g is the moduli space with some level structure.

As before, $\mathfrak{C}_g - \mathfrak{C}_g$ is a well-defined subvariety of $\operatorname{Jac}(\mathfrak{C}_g/M_g)$. One step further, let us put everything in the universal abelian variety $\pi \colon \mathfrak{A}_g \to \mathbb{A}_g$,

so that now, we wish to study subvarieties of \mathfrak{A}_g .

Non-degeneracy: geometric definition

On $\mathfrak{A}_g \to \mathbb{A}_g$, there is a canonial symmetric relatively ample line bundle \mathfrak{L}_g , which is trivial along the zero section. Consider the (1, 1)-form $c_1(\mathfrak{L}_g)$ (representative of the first Chern class). It is a non-negative form as \mathfrak{L}_g is nef.

Definition

A subvariety X of \mathfrak{A}_g is said to be non-degenerate if

$$c_1(\mathfrak{L}_g)|_X^{\wedge \dim X} \not\equiv 0.$$

Vaguely speaking, this means that $\mathfrak{L}_g|_X$ is big.

Non-degeneracy: a more Diophantine definition

Let \mathcal{H}_g be the Siegel upper half space. Then we have a uniformization $\mathcal{H}_g \to \mathbb{A}_g$ in the category of complex spaces.

Construct a similar uniformization \mathcal{X}_{2g} of the universal abelian variety \mathfrak{A}_g as follows:

- ightharpoonup real-algebraic: $\mathcal{X}_{2g} = \mathbb{R}^{2g} \times \mathcal{H}_g$;
- ➤ complex structure: $\mathbb{R}^{2g} \times \mathcal{H}_g \xrightarrow{\sim} \mathbb{C}^g \times \mathcal{H}_g$, $(a, b, Z) \mapsto (a + Zb, Z)$.

Then the 2-form $da \wedge db$ descends to a (1, 1)-form on \mathfrak{A}_g , which is a representative of $c_1(\mathfrak{L}_g)$ (N. Mok).

wy Upshot: the kernel of the skew-symmetric bilinear form defined by $c_1(\mathfrak{L}_g)$ is precisely $\{\{r\} \times \mathcal{H}_g : r \in \mathbb{R}^{2g}\}$.

Non-degeneracy in Diophantine way: Betti map

 $u: \mathcal{X}_{2g} \to \mathfrak{A}_g.$

Definition (Bertrand, Zannier, Masser, Corvaja, André)

The Betti map is defined to be the natural projection $b: \mathcal{X}_{2g} \to \mathbb{R}^{2g}$. It is a real-analytic map with complex fibers.

By the discussion in the previous slide, we have the following definition for non-degeneracy.

Definition

A subvariety X of \mathfrak{A}_g is said to be non-degenerate if

$$\operatorname{rk}_{\mathbb{R}} db|_{\widetilde{X}} = 2 \operatorname{dim} X.$$

Here \tilde{X} is an irreducible component of $u^{-1}(X)$.

In particular, X is always degenerate if dim X > g.

Functional Transcendence: (weak) Ax-Schanuel

Question ((weak) Ax-Schanuel)

Let $q: \Omega \to S$ be a surjective holomorphic morphism between algebraic varieties. Let $Z \subseteq \Omega$ be complex analytic. Then

$$\dim \overline{Z}^{\operatorname{Zar}} + \dim \overline{q(Z)}^{\operatorname{Zar}} \geq \dim Z + \dim \overline{q(Z)}^{\operatorname{biZar}}.$$

Here $\overline{q(Z)}^{\rm biZar}$ means the smallest bi-algebraic subvariety of S containing q(Z), where bi-algebraic means "both algebraic in Ω and in S".

Theorem (Ax, 1971, 1973)

Ax-Schanuel holds for semi-abelian varieties.

Functional Transcendence: (weak) Ax-Schanuel

Theorem (Mok-Pila-Tsimerman, 2019 Ann.)

Ax-Schanuel holds for $\mathcal{H}_g \to \mathbb{A}_g$.

Extensions of Mok-Pila-Tsimerman in two directions.

Theorem (Bakker-Tsimerman, 2019 Inv.)

Ax-Schanuel holds for variations of pure Hodge structures.

Theorem (G', 2018 preprint)

Ax-Schanuel holds for $u: \mathcal{X}_{2g} \to \mathfrak{A}_g$ (mixed Shimura variety).

We will use this mixed version to study the Betti map.

From non-degeneracy to unlikely intersection

For the notation

$$\mathcal{X}_{2g} = \mathbb{R}^{2g} \times \mathcal{H}_g \xrightarrow{u} \mathfrak{A}_g$$

$$\downarrow \qquad \qquad \downarrow \pi$$

$$\mathcal{H}_g \xrightarrow{} \mathbb{A}_g$$

with $X \subseteq \mathfrak{A}_q$ and \widetilde{X} a component of $u^{-1}(X)$, we have

X is degenerate

$$\iff \widetilde{X} = \bigcup_{r \in \mathbb{R}^{2g}, \widetilde{C} \text{ curve in } \mathcal{H}_g} (\{r\} \times \widetilde{C})$$

$$\iff X = \bigcup_{r \in \mathbb{R}^{2g}, \widetilde{C} \text{ curve in } \mathcal{H}_g} u(\{r\} \times \widetilde{C})$$

From non-degeneracy to unlikely intersection

So X is degenerate $\Rightarrow X = \bigcup_{r \in \mathbb{R}^{2g}, \widetilde{C} \text{ curve in } \mathcal{H}_a} \overline{u(\{r\} \times \widetilde{C})}^{\operatorname{Zar}}$. Now let us study

$$Y:=\overline{u(\{r\}\times\widetilde{C})}^{\mathrm{Zar}}$$

Apply mixed Ax-Schanuel to $Z = \{r\} \times \widetilde{C}$ (version of G'). We get

$$\dim \overline{Z}^{\operatorname{Zar}} + \dim \overline{u(Z)}^{\operatorname{Zar}} \geq \dim Z + \dim \overline{u(Z)}^{\operatorname{biZar}}.$$

It then becomes

$$\dim(\{r\} \times \widetilde{C}^{\operatorname{Zar}}) + \dim Y > \dim \overline{Y}^{\operatorname{biZar}}.$$

As dim $\widetilde{C}^{Zar} \leq \dim \overline{\pi(Y)}^{biZar}$, we have

$$\dim Y > \dim \overline{Y}^{\text{biZar}} - \dim \overline{\pi(Y)}^{\text{biZar}}.$$

From non-degeneracy to unlikely intersection

So we have

$$X$$
 is degenerate $\Leftrightarrow X = \bigcup_{\dim Y > \dim \overline{Y}^{\text{biZar}} - \dim \overline{\pi(Y)}^{\text{biZar}}} Y$.

The previous slide showed \Rightarrow using mixed Ax-Schanuel. The direction \Leftarrow follows directly from the description of bi-algebraic subvarieties in \mathfrak{A}_g .

We will show that the union on the right hand side is actually a finite union, and get a criterion to degeneracy from this!

Finiteness of the union

Theorem (Bogomolov, '70)

Let A be an abelian variety and let X be a subvariety. There are only finitely many abelian subvarieties B of A with dim B > 0 satisfying:

- (1) $a + B \subseteq X$ for some $a \in A$;
- (2) B is maximal for the property described in (1).
 - Ullmo (2014) proved the corresponding result for pure Shimura varieties, for the purpose of studying the André-Oort conjecture.
 - ➤ Habegger-Pila (2016) introduced the notion of weakly optimal subvarieties when studying the more general Zilber-Pink conjecture. They also proved the corresponding finiteness result for the case Y(1)^N.
 - Daw–Ren (2018) proved the finiteness result for pure Shimura varieties.

Criterion to degeneracy

In a preprint (2018), G' extended Daw–Ren's result to \mathfrak{A}_g (mixed Shimura varieties).

Applying this extension to the union in earlier slides (and some other results), we get the following criterion for degeneracy. To ease notation let us denote by $S = \pi(X) \subseteq \mathbb{A}_g$, and $\mathcal{A} := \mathfrak{A}_g \times_{\mathbb{A}_g} S$. We also assume that X is not contained in a proper subgroup scheme of $\mathcal{A} \to S$.

Theorem (G', 2018 preprint)

X is degenerate if and only if there exists an abelian subscheme $\mathcal B$ of $\mathcal A \to S$ such that $\dim \varphi(X) < \dim X - (g-g')$.

Back to Mazur's Conjecture

Back to our original question (study $X = \mathfrak{C}_g - \mathfrak{C}_g$). It is clear, by dimension reasons, that X is degenerate. But applying the criterion in the previous slide, one can easily show that $X^m := X \times_{M_g} \ldots \times_{M_g} X$ (m-copies) is non-degenerate when $m \geq 3g - 3$, if $g \geq 3$.

- where $\overline{J}(\overline{\mathbb{Q}})$, there are at most 3g-3 points which are NOT far from it.
- This gives the desired bound up to some packing argument. In fact, it is better to consider the Faltings–Zhang map

$$D_m\colon \mathfrak{A}_g^{m+1}\to \mathfrak{A}_g^m$$

fiberwise defined by $(P_0, P_1, \ldots, P_m) \mapsto (P_1 - P_0, \ldots, P_m - P_0)$. Then $D_m(\mathfrak{C}_q^{m+1})$ is non-degenerate for $m \geq 3g-2$, if $g \geq 2$.