Application of functional transcendence to bounding the number of points on curves

Ziyang Gao
CNRS, IMJ-PRG

July 22, 2019

Faltings's Theorem

Let $g \geq 0$ and $d \geq 1$ be two integers. Let C be an irreducible smooth projective curve of genus g, defined over a number field K of degree d. In 1983, Faltings proved the Mordell Conjecture.

Theorem (Faltings 1983)
When $g \geq 2$, the set $C(K)$ is finite.
However Faltings's 1983 proof does not give a good upper bound on $\# C(K)$.

Faltings's Theorem

In 1988, Vojta gave a second proof to Faltings's Theorem. The proof was simplified and generalized by Faltings in 1989, and further simplified by Bombieri in 1990. This new proof (BFV) gives an upper bound

$$
\# C(K) \leq c\left(g, d, h_{\Theta}(J)\right)^{1+\mathrm{rkz} J(K)}
$$

where $J=$ Jacobian of C, and $h_{\Theta}(J)$ is the Theta height of J.

Upper bound: Mazur's conjecture

Mazur asked the following question in 1986.
Conjecture (Mazur 1986)
Let $P_{0} \in C(\overline{\mathbb{Q}}), J=$ Jacobian of C and $j_{P_{0}}: C \rightarrow J$ be the Abel-Jacobi embedding via P_{0}. Let Γ be a finite rank subgroup of $J(\overline{\mathbb{Q}})$. Then

$$
\begin{equation*}
\#\left(\Gamma \cap j_{P_{0}}(C)(\overline{\mathbb{Q}})\right) \leq c(g)^{1+\mathrm{rk} \Gamma} \tag{1}
\end{equation*}
$$

Our main result is
Theorem (Dimitrov-G'-Habegger, forthcoming)
For any $g \geq 2$, there exists a number $\delta(g)>0$ such that the following property holds: If $h_{\Theta}(J)>\delta(g)$, then (1) holds.

Two upshots

Theorem (Dimitrov-G'-Habegger, forthcoming)

For any $g \geq 2$, there exists a number $\delta(g)>0$ such that the following property holds: If $h_{\ominus}(J)>\delta(g)$, then

$$
\#\left(\Gamma \cap j_{p_{0}}(C)(\overline{\mathbb{Q}})\right) \leq c(g)^{1+\mathrm{rk} \Gamma} .
$$

Two particular cases of this theorem.
$>$ If we take $P_{0} \in C(K)$ and $\Gamma=J(K)$, then the upper bound gives $\# C(K) \leq c(g, d)^{1+\mathrm{rk} J(K)}$. This is a weaker form of Mazur's conjecture.
$>$ If we take $\Gamma=J(\overline{\mathbb{Q}})_{\text {tor }}$, then the upper bound becomes a desired bound on the size of torsion packets on C, which by abuse of notation we denote by $C(\overline{\mathbb{Q}})_{\text {tor }}$ (towards uniform Manin-Mumford).

Known results on Mazur's conjecture

* For rational points, here are some known results towards the upper bound $\# C(K) \leq c(g, d)^{1+\mathrm{rk} J(K)}$.
> David-Philippon 2007: when $J \subset E^{n}$.
> David-Nakamaye-Philippon 2007: for some particular families of curves.
> Katz-Rabinoff-Zureick-Brown 2016: when $\mathrm{rkJ}(K) \leq g-3$.
$>$ Alpoge 2018: average number of $\# C(K)$ is finite when $g=2$.
* For algebraic torsion points, here are some known results towards the upper bound $\# C(\overline{\mathbb{Q}}) \leq c(g, d)$.
> Katz-Rabinoff-Zureick-Brown 2016: assuming some good reduction behavior.
> DeMarco-Holly-Ye 2018: $g=2$ bi-elliptic independent of d.

Review of the BFV method

(For simplicity assume Γ is finitely generated.)
On $J(\overline{\mathbb{Q}})$, there is a function $\hat{h}_{L}: J(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}_{\geq 0}$ vanishing precisely on $J(\overline{\mathbb{Q}})_{\text {tor }}$.
$\leadsto \hat{h}_{L}: \Gamma \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$.
m "Normed Euclidean space" $\left(\Gamma \otimes_{\mathbb{Z}} \mathbb{R}, \hat{h}_{L}\right)$, and Γ becomes a lattice in it.

Theorem (Vojta, Faltings, Bombieri, David-Philippon, Rémond)

 \#large points $\leq c(g) 7^{\mathrm{rk} \Gamma}$.$\Rightarrow$ to prove Mazur's Conj, it suffices to establish
Algebraic points are "far" from each other, i.e.
$\hat{h}_{L}(P-Q) \geq c^{\prime}(g) h_{\Theta}(J)$ for all $P \neq Q$ in $J(\overline{\mathbb{Q}})$.
In practice, need to add a calibration term to this inequality.

A height inequality

Theorem (G'-Habegger, Ann. 2019)

Let S be a curve over $\overline{\mathbb{Q}}$, let $\pi: \mathcal{A} \rightarrow S$ be an abelian scheme, and let \mathcal{L} be a relatively ample line bundle on \mathcal{A}. Let X be an irreducible subvariety of \mathcal{A} dominant to S.
> If X is non-degenerate (defined later), then there exist $c=c(X)>0$ and a Zariski open dense $U \subseteq X$ such that

$$
c\left(\hat{h}_{\mathcal{L}}(x)+1\right) \geq h_{\ominus}(s)
$$

for all $s \in S(\overline{\mathbb{Q}})$ and $x \in\left(U \cap \mathcal{A}_{S}\right)(\overline{\mathbb{Q}})$.
$>X$ is degenerate $\Leftrightarrow X=$ abelian subscheme + torsion section + "constant part".

Mazur's conjecture for 1-parameter families

Let $\mathfrak{C} \rightarrow S$ be a 1-parameter of curves of genus $g \geq 3$. Assume it is non-isotrivial. We have a relative Jacobian $\mathfrak{J} \rightarrow S$.

- The morphism $\mathfrak{C} \times{ }_{s} \mathfrak{C} \rightarrow \mathfrak{J}$, fiberwise defined by $(P, Q) \mapsto[P-Q]$, defines a subvariety of \mathfrak{J}, which we call $\mathfrak{C}-\mathfrak{C}$.
- Apply the height inequality to $\mathcal{A}=\mathfrak{J}$ and $X=\mathfrak{C}-\mathfrak{C}$. It is not hard to show that X is non-degenerate by part (2) of the theorem. We get

$$
c\left(\hat{h}_{\mathcal{L}}(P-Q)+1\right) \geq h_{\Theta}\left(\mathfrak{J}_{s}\right)
$$

for all $s \in S(\overline{\mathbb{Q}}), P, Q \in \mathfrak{C}_{s}(\overline{\mathbb{Q}})$ such that $P-Q \in U$.
$\leadsto>$ [Dimitrov-G'-Habegger, preprint 2019] With some extra details (packing argument), we prove the main theorem for 1-parameter families.

Digest of non-degeneracy

$$
c \hat{h}_{\mathcal{L}}(x)+c^{\prime} \geq h_{\Theta}(s) .
$$

$>c^{\prime}$ (partly) comes from the Height Machine.
$>$ Let us normalize \mathcal{L} so that it is trivial along the zero section.
> The height function h_{\ominus} on $S(\overline{\mathbb{Q}})$ is defined by an ample line bundle, say \mathcal{M}.
> Then the height inequality becomes the comparison of two line bundles \mathcal{L} and $\pi^{*} \mathcal{M}$ when restricted to X. We wish that $\left.\mathcal{L}^{\otimes N}\right|_{X}$ is "bigger" than $\left.\pi^{*} \mathcal{M}\right|_{x}$ for some $N \gg 0$.
$>$ To achieve this, it suffices to prove that $\left.\mathcal{L}\right|_{x}$ is "big".
$>$ So the definition of X non-degenerate should reflect the fact that $\left.\mathcal{L}\right|_{X}$ is big.
This is not vigorous as S, \mathcal{A}, X are not projective.

General case: preparation

To prove the result for general case, we need to investigate the universal curve $\mathfrak{C}_{g} \rightarrow M_{g}$ of genus g. Here M_{g} is the moduli space with some level structure.
As before, $\mathfrak{C}_{g}-\mathfrak{C}_{g}$ is a well-defined subvariety of $\operatorname{Jac}\left(\mathfrak{C}_{g} / M_{g}\right)$.
One step further, let us put everything in the universal abelian variety $\pi: \mathfrak{A}_{g} \rightarrow \mathbb{A}_{g}$,

so that now, we wish to study subvarieties of \mathfrak{A}_{g}.

Non-degeneracy: geometric definition

On $\mathfrak{A}_{g} \rightarrow \mathbb{A}_{g}$, there is a canonial symmetric relatively ample line bundle \mathfrak{L}_{g}, which is trivial along the zero section. Consider the $(1,1)$-form $c_{1}\left(\mathfrak{L}_{g}\right)$ (representative of the first Chern class). It is a non-negative form as \mathfrak{L}_{g} is nef.

Definition

A subvariety X of \mathfrak{A}_{g} is said to be non-degenerate if

$$
\left.c_{1}\left(\mathfrak{L}_{g}\right)\right|_{x} ^{\wedge \operatorname{dim} x} \not \equiv 0 .
$$

Vaguely speaking, this means that $\mathfrak{L} g \mid x$ is big.

Non-degeneracy: a more Diophantine definition

Let \mathcal{H}_{g} be the Siegel upper half space. Then we have a uniformization $\mathcal{H}_{g} \rightarrow A_{g}$ in the category of complex spaces.
Construct a similar uniformization $\mathcal{X}_{2 g}$ of the universal abelian variety \mathfrak{A}_{g} as follows:
$>$ real-algebraic: $\mathcal{X}_{2 g}=\mathbb{R}^{2 g} \times \mathcal{H}_{g}$;
$>$ complex structure: $\mathbb{R}^{2 g} \times \mathcal{H}_{g} \xrightarrow{\sim} \mathbb{C}^{g} \times \mathcal{H}_{g},(a, b, Z) \mapsto(a+Z b, Z)$. Then the 2 -form $d a \wedge d b$ descends to a $(1,1)$-form on \mathfrak{A}_{g}, which is a representative of $c_{1}\left(\mathfrak{L}_{g}\right)(\mathrm{N}$. Mok).
$m \rightarrow$ Upshot: the kernel of the skew-symmetric bilinear form defined by $c_{1}\left(\mathfrak{L}_{g}\right)$ is precisely $\left\{\{r\} \times \mathcal{H}_{g}: r \in \mathbb{R}^{2 g}\right\}$.

Non-degeneracy in Diophantine way: Betti map

$u: \mathcal{X}_{2 g} \rightarrow \mathfrak{A}_{g}$.
Definition (Bertrand, Zannier, Masser, Corvaja, André)
The Betti map is defined to be the natural projection b: $\mathcal{X}_{2 g} \rightarrow \mathbb{R}^{2 g}$. It is a real-analytic map with complex fibers.

By the discussion in the previous slide, we have the following definition for non-degeneracy.

Definition

A subvariety X of \mathfrak{A}_{g} is said to be non-degenerate if

$$
\left.\mathrm{rk}_{\mathbb{R}} d b\right|_{\tilde{X}}=2 \operatorname{dim} X
$$

Here \tilde{X} is an irreducible component of $u^{-1}(X)$.
In particular, X is always degenerate if $\operatorname{dim} X>g$.

Functional Transcendence: (weak) Ax-Schanuel

Question ((weak) Ax-Schanuel)
Let $q: \Omega \rightarrow S$ be a surjective holomorphic morphism between algebraic varieties. Let $Z \subseteq \Omega$ be complex analytic. Then
$\operatorname{dim} \bar{Z}^{\text {Zar }}+\operatorname{dim} \overline{q(Z)}^{\text {Zar }} \geq \operatorname{dim} Z+\operatorname{dim} \overline{q(Z)}^{\text {biZar }}$.
Here $\overline{q(Z)}{ }^{\text {bizar }}$ means the smallest bi-algebraic subvariety of S containing $q(Z)$, where bi-algebraic means "both algebraic in Ω and in S".

Theorem (Ax, 1971, 1973)
Ax-Schanuel holds for semi-abelian varieties.

Functional Transcendence: (weak) Ax-Schanuel

Theorem (Mok-Pila-Tsimerman, 2019 Ann.)
Ax-Schanuel holds for $\mathcal{H}_{g} \rightarrow \mathbb{A}_{g}$.
Extensions of Mok-Pila-Tsimerman in two directions.
Theorem (Bakker-Tsimerman, 2019 Inv.)
Ax-Schanuel holds for variations of pure Hodge structures.

Theorem (G', 2018 preprint)
Ax-Schanuel holds for $u: \mathcal{X}_{2 g} \rightarrow \mathfrak{A}_{g}$ (mixed Shimura variety).
We will use this mixed version to study the Betti map.

From non-degeneracy to unlikely intersection

For the notation

$$
\begin{aligned}
\mathcal{X}_{2 g}= & \mathbb{R}^{2 g} \times \mathcal{H}_{g} \xrightarrow{u} \mathfrak{A}_{g} \\
& \downarrow \\
& \downarrow_{g} \longrightarrow \pi \\
& \downarrow^{2}
\end{aligned}
$$

with $X \subseteq \mathfrak{A}_{g}$ and \widetilde{X} a component of $u^{-1}(X)$, we have
X is degenerate

$$
\begin{aligned}
& \Leftrightarrow \widetilde{X}=\bigcup_{r \in \mathbb{R}^{2 g}, \tilde{C} \text { curve in } \mathcal{H}_{g}}(\{r\} \times \widetilde{C}) \\
& \Leftrightarrow X=\bigcup_{r \in \mathbb{R}^{2 g}, \tilde{C}} u(\{r\} \times \widetilde{C})
\end{aligned}
$$

From non-degeneracy to unlikely intersection

So X is degenerate $\Rightarrow X=\bigcup_{r \in \mathbb{R}^{2 g}, \tilde{C} \text { curve in } \mathcal{H}_{g}} \overline{u(\{r\} \times \widetilde{C})}{ }^{\text {Zar }}$. Now let us study

$$
Y:=\overline{u(\{r\} \times \tilde{C})}^{\mathrm{Zar}}
$$

Apply mixed Ax-Schanuel to $Z=\{r\} \times \tilde{C}$ (version of G'). We get

$$
\operatorname{dim} \bar{Z}^{\mathrm{Zar}}+\operatorname{dim} \overline{u(Z)}^{\mathrm{Zar}} \geq \operatorname{dim} Z+\operatorname{dim} \overline{u(Z)}^{\mathrm{biZar}} .
$$

It then becomes

$$
\operatorname{dim}\left(\{r\} \times \widetilde{C}^{\mathrm{Zar}}\right)+\operatorname{dim} Y>\operatorname{dim} \bar{Y}^{\mathrm{biZar}}
$$

As $\operatorname{dim} \tilde{C}^{\mathrm{Zar}} \leq \operatorname{dim} \overline{\pi(Y)}^{\text {biZar }}$, we have

$$
\operatorname{dim} Y>\operatorname{dim} \bar{Y}^{\text {biZar }}-\operatorname{dim} \overline{\pi(Y)}^{\text {bizar }} .
$$

From non-degeneracy to unlikely intersection

So we have

$$
X \text { is degenerate } \Leftrightarrow X=\bigcup_{\operatorname{dim} Y>\operatorname{dim} \bar{Y}^{\text {iZZar}}-\operatorname{dim} \overline{\pi(Y)^{\text {bizar }}}} Y .
$$

The previous slide showed \Rightarrow using mixed Ax-Schanuel. The direction \Leftarrow follows directly from the description of bi-algebraic subvarieties in \mathfrak{A}_{g}.
We will show that the union on the right hand side is actually a finite union, and get a criterion to degeneracy from this!

Finiteness of the union

Theorem (Bogomolov, '70)

Let A be an abelian variety and let X be a subvariety. There are only finitely many abelian subvarieties B of A with $\operatorname{dim} B>0$ satisfying:
(1) $a+B \subseteq X$ for some $a \in A$;
(2) B is maximal for the property described in (1).
> Ullmo (2014) proved the corresponding result for pure Shimura varieties, for the purpose of studying the André-Oort conjecture.
> Habegger-Pila (2016) introduced the notion of weakly optimal subvarieties when studying the more general Zilber-Pink conjecture. They also proved the corresponding finiteness result for the case $Y(1)^{N}$.
> Daw-Ren (2018) proved the finiteness result for pure Shimura varieties.

Criterion to degeneracy

In a preprint (2018), G' extended Daw-Ren's result to \mathfrak{A}_{g} (mixed Shimura varieties).
Applying this extension to the union in earlier slides (and some other results), we get the following criterion for degeneracy. To ease notation let us denote by $S=\pi(X) \subseteq \mathbb{A}_{g}$, and $\mathcal{A}:=\mathfrak{A}_{g} \times{ }_{\mathbb{A}_{g}} S$. We also assume that X is not contained in a proper subgroup scheme of $\mathcal{A} \rightarrow S$.

Theorem ($G^{\prime}, 2018$ preprint)
X is degenerate if and only if there exists an abelian subscheme \mathcal{B} of $\mathcal{A} \rightarrow S$ such that $\operatorname{dim} \varphi(X)<\operatorname{dim} X-\left(g-g^{\prime}\right)$.

Back to Mazur's Conjecture

Back to our original question (study $X=\mathfrak{C}_{g}-\mathfrak{C}_{g}$). It is clear, by dimension reasons, that X is degenerate. But applying the criterion in the previous slide, one can easily show that $X^{m}:=X \times_{M_{g}} \ldots \times_{M_{g}} X$ (m-copies) is non-degenerate when $m \geq 3 g-3$, if $g \geq 3$.
\rightsquigarrow Upshot: Around each algebraic point in $J(\overline{\mathbb{Q}})$, there are at most $3 g-3$ points which are NOT far from it.
\leadsto This gives the desired bound up to some packing argument. In fact, it is better to consider the Faltings-Zhang map

$$
D_{m}: \mathfrak{A}_{g}^{m+1} \rightarrow \mathfrak{A}_{g}^{m}
$$

fiberwise defined by $\left(P_{0}, P_{1}, \ldots, P_{m}\right) \rightarrow\left(P_{1}-P_{0}, \ldots, P_{m}-P_{0}\right)$. Then $D_{m}\left(\mathfrak{C}_{g}^{m+1}\right)$ is non-degenerate for $m \geq 3 g-2$, if $g \geq 2$.

