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Introduction

BSD conjecture

Let E be an elliptic curve over a number field F .

1

L(E/F , s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1;

2

E (F ): Mordell-Weil group, finitely generated abelian group;
X(E/F ) = Ker(H1(F ,E ) →


v H

1(Fv ,E )), Shafarevich-Tate
group, conjectured to be finite;
Selp∞(E/Q) = Ker(H1(F ,E [p∞]) →


v H

1(Fv ,E )):
p∞-Selmer group, cofinitely generated Zp-module. (Here p is
a prime),

They fit into an short exact sequence:

0 → E (F )⊗Z Qp/Zp → Selp∞(E/F ) → X(E/F )[p∞] → 0

Ye Tian p-Converse Theorem (CM Case)
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Introduction

BSD conjecture

Conjecture (Birch and Swinnerton-Dyer)

Let E be an elliptic curve over a number field F .

Let r ≥ 0 be an
integer and p a prime. Then the following are equivalent:

1

ords=1L(E/F , s) = r ;

2

rankZ E (F ) = r and X(E/F ) is finite;

3

corankZpSelp∞(E/F ) = r .

Moreover, under these conditions, the formula holds:

L(r)(E/F , 1)

r ! · RE · ΩE/

|DF |

=


ℓ cℓ ·#X(E/F )

#E (F )2tors
.

The p-part of BSD formula for E means that both sides
(conjecturally to be rational numbers) have the same p-valuation.

Ye Tian p-Converse Theorem (CM Case)
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Introduction

(2) ⇒ (3) follows from the short exact sequence

0 → E (F )⊗Z Qp/Zp → Selp∞(E/F ) → X(E/F )[p∞] → 0

It seems that the remain part can be approachable with
current techniques, only when F is a totally real field and
r ≤ 1, which we assume now.

(1) ⇒ (2) is given by the Gross-Zagier formula of
Yuan-Zhang-Zhang and Kolyvagin-Bertonili-Darmon (and
others) via Heegner points.

Ye Tian p-Converse Theorem (CM Case)
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Introduction

The implication (3) ⇒ (1) is called p-converse.

The p-converse
also arises naturally in the study of Goldfeld’s conjecture.

Conjecture (D. Goldfeld)

In a quadratic twist family of elliptic curves over F (fixed a, b ∈ F),

E ∈ {ny2 = x3 + ax + b, n ∈ F×/F×2}
ords=1L(E/F , s) takes values 0 (resp. 1) in density one among
members with sign +1 (resp. −1) in the functional equations of
their L-functions.

Theorem (A.Smith)

An analogue to Goldfeld conjecture, with ords=1L(E/Q, s)
replaced by corankZ2Sel2∞(E/Q), holds for the family

{ny2 = x3 − x , n ∈ Z≥1 square-free}.

Goldfeld conjecture for the above family will follows if one can
show the p = 2-converse (r = 0, 1) for them.

Ye Tian p-Converse Theorem (CM Case)
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Introduction

Results on p-Converse

Assume that F = Q and p is an ordinary prime for E .

1 For r = 0, Non-CM case is due to Skinner-Urban and CM
case is due to Rubin (Hsieh for F totally real).

2

Only since the last few years, there has been progress in the
case r = 1. In non-CM case,

1

W. Zhang: (together with Kolyvagin conjecture), level raising
and rank lowering, Jochnowitz congruence, and
Skinner-Urban;

2

C. Skinner: BDP formula and Rankin-Selberg IMC divisibility
(Wan);

They established the p-converse results simultareously and
independently under different mild conditions. It seems that
these techniques at various stages require the big Galois image
condition on E [p]. In particular, the CM case is excluded. For
CM ordinary case over Q, Burungale-T 2017.

Ye Tian p-Converse Theorem (CM Case)
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and rank lowering, Jochnowitz congruence, and
Skinner-Urban;

2

C. Skinner: BDP formula and Rankin-Selberg IMC divisibility
(Wan);

They established the p-converse results simultareously and
independently under different mild conditions. It seems that
these techniques at various stages require the big Galois image
condition on E [p]. In particular, the CM case is excluded. For
CM ordinary case over Q, Burungale-T 2017.
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The main result of this talk is the following.

Theorem (Burungale-Skinner-T)

Let E be an elliptic curve over a totally real field F with CM by M.
Let p be an ordinary prime for E . Then the p-converse for E/F
holds:

corankZpSelp∞(E/F ) = 1 =⇒ ords=1L(E/F , s) = 1,

provided that p ∤ 6DFNEh
−
MF/F . Here NE is the conductor of E , M

is the CM field of E and h− is the relative class number.
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The role of Heegner Points in the Proof

Let E be an elliptic curve over Q and K an imaginary quadratic
field

s.t. (E ,K ) satisfies the classical Heegner hypothesis:

there exists N ⊆ OK such that OK/N ≃ Z/NZ.
E has non-split semi-stable reduction at primes dividing
(NE ,DK ).

Therefore we have a CM point

P := (C/OK → C/N −1) ∈ X0(N)(HK )

The classical Heegner point is constructed from the CM point via
modular parametrization f : X0(N) → E :

yK := TrHK/K f (P) ∈ E (K ).

The Theorem of Gross-Zagier implies that

ords=1L(EK , s) = 1 ⇐⇒ yK ∕= 0 in E (K )⊗Z Q.
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Suppose we aim to show p-converse for E/Q (r = 1).

We may
choose K such that

L(E (K), 1) ∕= 0,

(thus Selp∞(E (K)/Q) is finite). Then the p-converse for E/Q:

corankZpSelp∞(E/Q) = 1 =⇒ ords=1L(E/Q, s) = 1

is equivalent to the following p-converse for E/K (without
L-function):

corankZpSelp∞(E/K ) = 1 =⇒ yK ∕= 0 in E (K )⊗Z Q.
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Iwasawa theory

To introduce Iwasawa tool, we recall a special case of BSD.

Assume yK ∕= 0 in E (K )Q. By G-Z and Koly., we have

ords=1L(EK , 1) = rankE (K ) = 1 and X(E/K ) is finite;
The BSD formula for E/K is equivalent to

[E (K ) : ZyK ]2 =̇ #X(E/K ).

Its p-part can be reformulate in terms of Selmer groups. In the
exact sequence

0 −→ E (K )/pnE (K ) −→ Selpn(E/K ) −→ X(E/K )[pn] −→ 0,

Define

S(E/K ) := lim←−
n

Selpn(E/K ), X (E/K ) = (lim−→
n

Selpn(E/K ))∨.

Then the p-part of BSD formula is equivalent to

#(S(E/K )/ZpyK )
2 =̇ #X (E/K )tors

Ye Tian p-Converse Theorem (CM Case)
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Introduction

Non-triviality of Heenger Points

Assume that p is split in K and good ordinary for E .

Let K∞ be the anticyclotomic Zp-extension over K so that
1 ∕= τ ∈ Gal(K/Q) acts on ΓK = Gal(K∞/K ) by taking
inverse.

For each n ≥ 0, let Kn ⊂ K∞ with [Kn : K ] = pn.

Using order On := Z+ pnOK , one similarly construct Heegner
points of higher order

yn ∈ E (Kn)⊗ Zp ⊂ S(E/Kn)

such that

1

TrKn/Kn−1
yn = yn−1,

2

y0 ∈ E (K ) is basically the Heegner point yK .

Ye Tian p-Converse Theorem (CM Case)
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Namely, Heegner points form a family (Euler system),

and we
obtain a Heegner class

y := (yn) ∈ S(E/K∞) := lim←− S(E/Kn).

The key input in the Iwasawa situation K∞/K is the generic
non-triviality of y , by a result of Cornut-Vastal, etc.

Proposition

Let E be an elliptic curve over Q and K an imaginary quadratic
field such that Heegner hypothesis is satisfied. Then

1

both S(E/K∞) and X (E/K∞) have Λ-rank one.

2

the Heegner class y ∈ S(E/K∞) is non-torsion.

Ye Tian p-Converse Theorem (CM Case)
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Introduction

As an Iwasawa theoretic version of the above special case of BSD
(with yK ∕= 0),

P. Riou made the following conjecture

Conjecture (Perrin-Riou, Heegner Point Main Conjecture(HPMC))

With the same assumptions and notations as above.

Char(S(E/K∞)/Λy)2 =̇ Char(X (E/K∞)tors)

The upshot is

On one hand, HPMC (even the divisibility ⊇ in ΛQp) implies
the p-converse for E/K :

corankZpSelp∞(E/K ) = 1 =⇒ yK ∕= 0 in E (K )⊗Z Q.

On the other hand, over the extension K∞, we may approach
HPMC using other Iwasawa theoretical objects (tools): elliptic
units for CM case, Eisenstein congruence, Belinson-Flach
elements.

Ye Tian p-Converse Theorem (CM Case)
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In the Non-CM case, X. Wan proved a divisibility in a
Rankin-Selberg IMC. Along with BDP formula,

it leads to the
desired divisibility of HPMC. However, the non-CM
hypothesis seems crucial in Wan’s divisibility.

We may ask wether CM Iwasawa theory (GL1/M) can be
related to the CM p-converse (GL2/Q). For example,
Rubin’s two variable main conjecture for CM case over Q,
and Hsieh’s divisibility in CM IMC for over totally real field.

But if one simply take K be the CM field M of E , the sign of
L-series L(E/M, s) is +1. In particular, Heegner construction
does not work.

On the other hand, the construction of Heegner points was
generalized to all self-dual Rankin-Selberg pair (g ,χ/K ) over
totally real fields (even G-Z formula of YZZ).

The key in our approach is to choose a pair so that it fits into
an Iwasawa situation.
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Come back to the CM ordinary case in the theorem:

E/F is an elliptic curve with CM by M,

p split in M is a good prime, write p = vv ;

assume that corankZpSelp∞(E/F ) = 1.
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Introduction

Our construction of relevant Heegner points is as follows.

let λ be the Hecke character over K := MF associate to E
with (λ) = −1.

Let θλ be its theta series, a Hilbert modular form of parallel
weight 2 and with trivial central character.

Take a finite order Hecke character χ over K , s.t.

L


1,

λ

χ
· χ∗


∕= 0,

where χ∗(t) = χ(t), note that χ∗/χ is an anticyclotomic
Hecke character of finite order.

The existence of such χ follows from either a result of
Rohrlich/Hida or of Bump-Friedberg-Hoffstein.

Ye Tian p-Converse Theorem (CM Case)
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Consider the Rankin-Selberg pair


g = θλ/χ,χ



it is self-dual, i.e. ωg · χ|A×
F
= 1.

its L-series L(s, g × χ) has sign −1 in its functional equation
and satisfies

L(s, g × χ) = L(s,λ)L(s,λ/χ · χ∗)

The Heegner points we employ are associated to this pair as
follows.

Ye Tian p-Converse Theorem (CM Case)
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Let B be an abelian variety associated to g × χ:

L(B/K , s) =


σ

L(s − 1/2, gσ × χσ).

Let V be an incoherent totally definite K/F -Hermitian space
of rank 2 with Hasse invariants given by

v (V) = v (g × χ)χvηv (−1), ∀v

Let X be the unitary Shimura curve over K associated GU(V)
of certain level parametrizing B .

There is similarly Heegner point (from the modular
parametrization)

y0 ∈ B(K )Q.

The Gross-Zagier formula of Yuan-Zhang-Zhang shows that y0 ∕= 0
if and only if L′(1/2, g × χ) ∕= 0. Similarly, the p-converse for
E/F is equivalent to the p-converse for B/K :

corankOpSelp∞(B/K ) = 1 =⇒ y0 ∕= 0.

Ye Tian p-Converse Theorem (CM Case)
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The similar Iwasawa tool can be introduced here.

For a fixed prime
p|p of F and related p-adic anti-cyclotomic extension K∞, there is
a Heegner class

y ∈ S(B/K∞),

and the above p-converse to B/K follows from the following

Conjecture (HPMC in CM case)

Let g be a Hilbert form of parallel weight 2 with CM by K, χ a
finite order Hecke character over K such that ωg · χ|A×

F
= 1 and

sign(g ×χ) = −1. Let p be a prime such that K/F is p-ordinary.
Then in ΛQp ,

Char(S(B/K∞)/Λy)·Char(S(B/K∞)/Λy)ι = Char(X (B/K∞)tors) in ΛQ.

Ye Tian p-Converse Theorem (CM Case)
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Introduction

Proof of CM p-converse in ordinary case

Over K∞, the set-up becomes quite flexible and systematic.

The
proof in ordinary case can be indicated as follows.

CM IMC

factorization


st-IMC 
BDP/LZZ formula

 HPMC


p-converse

Ye Tian p-Converse Theorem (CM Case)
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Introduction

The CM Iwasawa Main Conjecture

K∞ ⊃ K∞: the composition of all Zp-extensions of K ,

K ′: a finite abelian extension of K disjoint from K∞,and
ψ : Gal(K ′/K ) → C×

p a character.

Λ = Wψ[[Gal(K∞/K )]]: the Iwsawa algebra for K∞/K .

Σ: a p-ordinary CM type for K/F , and Σp the p-adic CM
type induced from a fixed Q → Cp.

Ψ = ψΛ : Gal(KS/K ) → Λ× with Λ the tautological
Lambda-valued Galois character. Here S is any finite set of
prime-to-p places containing prime-to-p bad places of ψ.

Conjecture (Iwasawa Main Conjecture for CM Fields)

We have the following equality of ideals in Λ:

Char(SelK (Ψ,Σ)) = (L(Ψ,Σ)).

Ye Tian p-Converse Theorem (CM Case)
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Here

the Selmer group SelK (Ψ,Σ) is defined to be

Ker

H1(Gal(KS/K ),Ψ⊗Λ Λ∗) →



w∈S∪Σc
p

H1(Iw ,Ψ⊗Λ Λ∗)

.

Let L(Ψ,Σ) be the Katz p-adic L-function. It interpolates the
L-values L(0,ψλ), where λ is of infinite type kΣ+ κ(1− c)
with either

k ≥ 1 and κ ∈ Z≥0[Σ] or
k ≤ 1 and kΣ+ κ ∈ Z>0[Σ].

Under certain conditions (we assume in the theorem), Hsieh
established the divisibility

Theorem (Hsieh)

The following inequality of ideals in Λ holds:

Char(SelK (Ψ,Σ)) ⊆ (L(Ψ,Σ)).

Ye Tian p-Converse Theorem (CM Case)
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Introduction

The strict Main Conjecture

Fix an embedding K ⊂ Q → Qp inducing v |p.

Let p = vv .

Let Γ = Gal(K∞/K ), Λ = Op[[Γ]], Λ∗ its Pontryagin dual.

Let T = TpB , M = T ⊗ Λ∗, v , v , bad places ∈ Σ (finite set).

The strict-Selmer group Selst(B/K∞) of B over K∞ (Greenberg
condition at w |p, ∕= p):
Ker


H1(GK ,Σ,M)

res−−→ H1(Kv ,M)×


w∈Σ,w ∤p H
1(Kw ,M)


.

The p-adic L-function L (B/K∞) ∈ Λ, which interpolates the
central values L(∗, g × χψ), for ψ p-adic characters with HT
weight < −1 at v and > 1 at v .

Conjecture (BDP Main Conjecture)

The Pontryagin dual X st(B/K∞) of Selst(B/K∞) is Λ-torsion and

Char(X st(B/K∞)) = (L (B/K∞)).

Ye Tian p-Converse Theorem (CM Case)
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Introduction

Recall CM IMC

factorization


st-IMC 
BDP/LZZ formula

 HPMC


p-converse

The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes, so far there is no
generalization of elliptic units, instead we use Eisenstein
congruence divisibility of Hsieh (for p-converse).

Finally, we remark that the Euler system method might produce
another divisibility in HPMC,so that complete CM IMC in certain
case, and also produce p-part of BSD formula for rank one E/F .

Ye Tian p-Converse Theorem (CM Case)
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Introduction

Let us end with rank one examples of infinite family:

Example

Let p ≡ 5 mod 8 be a prime. Consider the elliptic curve
E : y2 = x3 − p2x . We have that

ords=1L(E , s) = rankE (Q) = corankZpSelp∞(E/Q) = 1 and,

the full BSD formula for E/Q holds:

L′(E , 1)

Ω · R =


ℓ cℓ ·#X(E/Q)

#E (Q)2tor
.

Moreover, prime p can be replaced by any positive integer n ≡ 5
mod 8 such that Q(

√
−n) has no ideal class of order 4.

It is easy to see 2∞-Selmer group of E has corank one. But we
showed the 2-converse by direct computation of Heegner points,
which is also used to establish positive density of congruent
numbers.

Ye Tian p-Converse Theorem (CM Case)
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